aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h
blob: ac428b169ff70d380bd709d3ae320e971d8e473e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
#ifndef EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H
#define EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H

namespace Eigen {

/** \class TensorBlock
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor block class.
  *
  * This class represents a tensor block specified by the index of the
  * first block coefficient, and the size of the block in each dimension.
  *
  */

namespace internal {

template <typename Index, typename Scalar, std::size_t NumDims, int Layout>
class TensorBlock {
 public:
  typedef DSizes<Index, NumDims> Dimensions;

  TensorBlock(const Index first_coeff_index,
              const Dimensions& block_sizes,
              const Dimensions& block_strides,
              const Dimensions& tensor_strides,
              Scalar* data)
      : m_first_coeff_index(first_coeff_index),
        m_block_sizes(block_sizes),
        m_block_strides(block_strides),
        m_tensor_strides(tensor_strides),
        m_data(data) {}

  Index first_coeff_index() const { return m_first_coeff_index; }

  const Dimensions& block_sizes() const { return m_block_sizes; }

  const Dimensions& block_strides() const { return m_block_strides; }

  const Dimensions& tensor_strides() const { return m_tensor_strides; }

  Scalar* data() { return m_data; }

  const Scalar* data() const { return m_data; }

 private:
  Index m_first_coeff_index;
  Dimensions m_block_sizes;
  Dimensions m_block_strides;
  Dimensions m_tensor_strides;
  Scalar* m_data;  // Not owned.
};

template <typename Index, typename Scalar, bool Vectorizable>
struct TensorBlockCopyOp {
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const Index num_coeff_to_copy, const Index dst_index,
      const Index dst_stride, Scalar* EIGEN_RESTRICT dst_data, const Index src_index,
      const Index src_stride, const Scalar* EIGEN_RESTRICT src_data) {
    for (Index i = 0; i < num_coeff_to_copy; ++i) {
      dst_data[dst_index + i * dst_stride] =
          src_data[src_index + i * src_stride];
    }
  }
};

// NOTE: Benchmarks run on an implementation of this that broke each of the
// loops in these conditionals into it's own template specialization (to
// avoid conditionals in the caller's loop) did not show an improvement.
template <typename Index, typename Scalar>
struct TensorBlockCopyOp<Index, Scalar, true> {
  typedef typename packet_traits<Scalar>::type Packet;
  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const Index num_coeff_to_copy, const Index dst_index,
      const Index dst_stride, Scalar* EIGEN_RESTRICT dst_data,
      const Index src_index, const Index src_stride,
      const Scalar* EIGEN_RESTRICT src_data) {
    if (src_stride == 1) {
      const Index packet_size = internal::unpacket_traits<Packet>::size;
      const Index vectorized_size =
          (num_coeff_to_copy / packet_size) * packet_size;
      if (dst_stride == 1) {
        // LINEAR
        for (Index i = 0; i < vectorized_size; i += packet_size) {
          Packet p = internal::ploadt<Packet, Unaligned>(
              src_data + src_index + i);
          internal::pstoret<Scalar, Packet, Unaligned>(
              dst_data + dst_index + i, p);
        }
        for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst_data[dst_index + i] = src_data[src_index + i];
        }
      } else {
        // SCATTER
        for (Index i = 0; i < vectorized_size; i += packet_size) {
          Packet p = internal::ploadt<Packet, Unaligned>(
              src_data + src_index + i);
          internal::pscatter<Scalar, Packet>(
              dst_data + dst_index + i * dst_stride, p, dst_stride);
        }
        for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst_data[dst_index + i * dst_stride] = src_data[src_index + i];
        }
      }
    } else {
      if (dst_stride == 1) {
        // GATHER
        const Index packet_size = internal::unpacket_traits<Packet>::size;
        const Index vectorized_size =
            (num_coeff_to_copy / packet_size) * packet_size;
        for (Index i = 0; i < vectorized_size; i += packet_size) {
          Packet p = internal::pgather<Scalar, Packet>(
              src_data + src_index + i * src_stride, src_stride);
          internal::pstoret<Scalar, Packet, Unaligned>(
              dst_data + dst_index + i, p);
        }
        for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
          dst_data[dst_index + i] = src_data[src_index + i * src_stride];
        }
      } else {
        // RANDOM
        for (Index i = 0; i < num_coeff_to_copy; ++i) {
          dst_data[dst_index + i * dst_stride] =
              src_data[src_index + i * src_stride];
        }
      }
    }
  }
};

/** \class TensorBlockIO
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor block IO class.
  *
  * This class is responsible for copying data between a tensor and a tensor
  * block.
  *
  */
template <typename Index, typename Scalar, std::size_t NumDims, int Layout,
          bool Vectorizable, bool BlockRead>
class TensorBlockIO {
 public:
  typedef typename internal::TensorBlock<Index, Scalar, NumDims, Layout>
    TensorBlock;
  typedef typename internal::TensorBlockCopyOp<Index, Scalar, Vectorizable>
    TensorBlockCopyOp;

 protected:
  struct BlockIteratorState {
    Index input_stride;
    Index output_stride;
    Index input_span;
    Index output_span;
    Index size;
    Index count;
  };

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Copy(
      const TensorBlock& block, Index first_coeff_index,
      const array<Index, NumDims>& tensor_to_block_dim_map,
      const array<Index, NumDims>& tensor_strides, const Scalar* src_data,
      Scalar* dst_data) {
    // Calculate strides and dimensions.
    const Index block_dim_for_tensor_stride1_dim =
        NumDims == 0 ? 1 :
        tensor_to_block_dim_map[static_cast<int>(Layout) ==
                                        static_cast<int>(ColMajor)
                                    ? 0
                                    : NumDims - 1];
    const size_t block_inner_dim_size =
        NumDims == 0 ? 1 :
        block.block_sizes()[block_dim_for_tensor_stride1_dim];
    const size_t block_outer_dim_size =
        NumDims == 0 ? 1 :
        block.block_sizes().TotalSize() / block_inner_dim_size;

    Index inputIndex;
    Index outputIndex;
    Index input_stride;
    Index output_stride;

    // Setup strides to read/write along the tensor's stride1 dimension.
    if (BlockRead) {
      inputIndex = first_coeff_index;
      outputIndex = 0;
      input_stride = 1;
      output_stride = NumDims == 0 ? 1
          : block.block_strides()[block_dim_for_tensor_stride1_dim];
    } else {
      inputIndex = 0;
      outputIndex = first_coeff_index;
      input_stride = NumDims == 0 ? 1
          : block.block_strides()[block_dim_for_tensor_stride1_dim];
      output_stride = 1;
    }

    const std::size_t at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
    array<BlockIteratorState, at_least_1_dim> block_iter_state;

    // Initialize block iterator state.
    for (int i = 0; i < static_cast<int>(NumDims) - 1; ++i) {
      const int dim = static_cast<int>(Layout) == static_cast<int>(ColMajor)
                          ? i + 1
                          : NumDims - i - 2;
      block_iter_state[i].size =
          block.block_sizes()[tensor_to_block_dim_map[dim]];
      if (BlockRead) {
        block_iter_state[i].input_stride = tensor_strides[dim];
        block_iter_state[i].output_stride =
            block.block_strides()[tensor_to_block_dim_map[dim]];
      } else {
        block_iter_state[i].input_stride =
            block.block_strides()[tensor_to_block_dim_map[dim]];
        block_iter_state[i].output_stride = tensor_strides[dim];
      }
      block_iter_state[i].input_span =
          block_iter_state[i].input_stride * (block_iter_state[i].size - 1);
      block_iter_state[i].output_span =
          block_iter_state[i].output_stride * (block_iter_state[i].size - 1);
      block_iter_state[i].count = 0;
    }

    // Iterate copying data from src to dst.
    for (Index i = 0; i < block_outer_dim_size; ++i) {
      TensorBlockCopyOp::Run(block_inner_dim_size, outputIndex, output_stride,
                             dst_data, inputIndex, input_stride, src_data);
      // Update index.
      for (int i = 0; i < static_cast<int>(NumDims) - 1; ++i) {
        if (++block_iter_state[i].count < block_iter_state[i].size) {
          inputIndex += block_iter_state[i].input_stride;
          outputIndex += block_iter_state[i].output_stride;
          break;
        }
        block_iter_state[i].count = 0;
        inputIndex -= block_iter_state[i].input_span;
        outputIndex -= block_iter_state[i].output_span;
      }
    }
  }
};

/** \class TensorBlockReader
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor block reader class.
  *
  * This class is responsible for reading a tensor block.
  *
  */

template <typename Index, typename Scalar, std::size_t NumDims, int Layout,
          bool Vectorizable>
class TensorBlockReader : public TensorBlockIO<Index, Scalar, NumDims,
                                               Layout, Vectorizable, true> {
 public:
  typedef typename internal::TensorBlock<Index, Scalar, NumDims, Layout>
      TensorBlock;
  typedef TensorBlockIO<Index, Scalar, NumDims, Layout, Vectorizable, true>
      Base;

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      TensorBlock* block, const Scalar* src_data) {
    array<Index, NumDims> tensor_to_block_dim_map;
    for (int i = 0; i < NumDims; ++i) {
      tensor_to_block_dim_map[i] = i;
    }
    Base::Copy(*block, block->first_coeff_index(), tensor_to_block_dim_map,
               block->tensor_strides(), src_data, block->data());
  }

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      TensorBlock* block, Index first_coeff_index,
      const array<Index, NumDims>& tensor_to_block_dim_map,
      const array<Index, NumDims>& tensor_strides, const Scalar* src_data) {
    Base::Copy(*block, first_coeff_index, tensor_to_block_dim_map,
               tensor_strides, src_data, block->data());
  }
};

/** \class TensorBlockWriter
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor block writer class.
  *
  * This class is responsible for writing a tensor block.
  *
  */

template <typename Index, typename Scalar, std::size_t NumDims, int Layout,
          bool Vectorizable>
class TensorBlockWriter : public TensorBlockIO<Index, Scalar, NumDims,
                                               Layout, Vectorizable, false> {
 public:
  typedef typename internal::TensorBlock<Index, Scalar, NumDims, Layout>
      TensorBlock;
  typedef TensorBlockIO<Index, Scalar, NumDims, Layout, Vectorizable, false>
      Base;

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const TensorBlock& block, Scalar* dst_data) {
    array<Index, NumDims> tensor_to_block_dim_map;
    for (int i = 0; i < NumDims; ++i) {
      tensor_to_block_dim_map[i] = i;
    }
    Base::Copy(block, block.first_coeff_index(), tensor_to_block_dim_map,
               block.tensor_strides(), block.data(), dst_data);
  }

  static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
      const TensorBlock& block, Index first_coeff_index,
      const array<Index, NumDims>& tensor_to_block_dim_map,
      const array<Index, NumDims>& tensor_strides, Scalar* dst_data) {
    Base::Copy(block, first_coeff_index, tensor_to_block_dim_map,
               tensor_strides, block.data(), dst_data);
  }
};

enum TensorBlockShapeType {
  kUniformAllDims,
  kSkewedInnerDims,
};

struct TensorOpResourceRequirements {
  TensorBlockShapeType block_shape;
  std::size_t block_total_size;
  // TODO(andydavis) Add 'target_num_threads' to support communication of
  // thread-resource requirements. This will allow ops deep in the
  // expression tree (like reductions) to communicate resources
  // requirements based on local state (like the total number of reductions
  // to be computed).
  TensorOpResourceRequirements(internal::TensorBlockShapeType shape,
                               const std::size_t size)
      : block_shape(shape), block_total_size(size) {}
};

/** \class TensorBlockMapper
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor block mapper class.
  *
  * This class is responsible for iterating over the blocks of a tensor.
  *
  */

template <typename Index, typename Scalar, std::size_t NumDims, int Layout>
class TensorBlockMapper {
 public:
  typedef typename internal::TensorBlock<Index, Scalar, NumDims, Layout>
      TensorBlock;

  TensorBlockMapper(const Eigen::DSizes<Index, NumDims>& dims,
                    const TensorBlockShapeType block_shape,
                    const size_t max_coeff_count)
      : m_dimensions(dims), m_block_dim_sizes(dims), m_total_block_count(1) {
    if (m_block_dim_sizes.TotalSize() > max_coeff_count) {
      if (block_shape == kUniformAllDims) {
        // Tensor will not fit within 'max_coeff_count' budget: calculate tensor
        // block dimension sizes based on "square" dimension size target.
        const size_t dim_size_target =
            std::pow(static_cast<float>(max_coeff_count),
                     1.0 / static_cast<float>(m_block_dim_sizes.rank()));
        for (size_t i = 0; i < m_block_dim_sizes.rank(); ++i) {
          // TODO(andydavis) Adjust the inner most 'm_block_dim_size' to make it
          // a multiple of the packet size. Note that reducing 'm_block_dim_size'
          // in this manner can increase the number of blocks, and so will
          // amplify any per-block overhead.
          m_block_dim_sizes[i] =
              numext::mini(dim_size_target, static_cast<size_t>(m_dimensions[i]));
        }
        // Add any un-allocated coefficients to inner dimension(s).
        Index total_size = m_block_dim_sizes.TotalSize();
        for (int i = 0; i < NumDims; ++i) {
          const int dim = static_cast<int>(Layout) == static_cast<int>(ColMajor)
              ? i : NumDims - i - 1;
          if (m_block_dim_sizes[dim] < m_dimensions[dim]) {
            const Index total_size_other_dims = total_size /
                m_block_dim_sizes[dim];
            const Index alloc_avail = max_coeff_count / total_size_other_dims;
            if (alloc_avail == m_block_dim_sizes[dim]) {
              // Insufficient excess coefficients to allocate.
              break;
            }
            m_block_dim_sizes[dim] = numext::mini(m_dimensions[dim], alloc_avail);
            total_size = total_size_other_dims * m_block_dim_sizes[dim];
          }
        }
      } else {
        eigen_assert(block_shape == kSkewedInnerDims);
        Index coeff_to_allocate = max_coeff_count;
        for (int i = 0; i < NumDims; ++i) {
          const int dim = static_cast<int>(Layout) == static_cast<int>(ColMajor)
              ? i : NumDims - i - 1;
          m_block_dim_sizes[dim] = numext::mini(coeff_to_allocate,
                                                m_dimensions[dim]);
          coeff_to_allocate /= numext::maxi(static_cast<Index>(1),
                                            m_block_dim_sizes[dim]);
        }
      }
    }

    // Calculate block counts by dimension and total block count.
    DSizes<Index, NumDims> block_count;
    for (size_t i = 0; i < block_count.rank(); ++i) {
      block_count[i] =
          (m_dimensions[i] + m_block_dim_sizes[i] - 1) / m_block_dim_sizes[i];
    }
    m_total_block_count = array_prod(block_count);

    // Calculate block strides (used for enumerating blocks).
    if (NumDims > 0) {
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        m_block_strides[0] = 1;
        m_tensor_strides[0] = 1;
        for (int i = 1; i < NumDims; ++i) {
          m_block_strides[i] = m_block_strides[i - 1] * block_count[i - 1];
          m_tensor_strides[i] = m_tensor_strides[i - 1] * m_dimensions[i - 1];
        }
      } else {
        m_block_strides[NumDims - 1] = 1;
        m_tensor_strides[NumDims - 1] = 1;
        for (int i = NumDims - 2; i >= 0; --i) {
          m_block_strides[i] = m_block_strides[i + 1] * block_count[i + 1];
          m_tensor_strides[i] = m_tensor_strides[i + 1] * m_dimensions[i + 1];
        }
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  GetBlockForIndex(Index block_index, Scalar* data) const {
    Index first_coeff_index = 0;
    DSizes<Index, NumDims> coords;
    DSizes<Index, NumDims> sizes;
    DSizes<Index, NumDims> strides;
    if (NumDims > 0) {
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        for (int i = NumDims - 1; i > 0; --i) {
          const Index idx = block_index / m_block_strides[i];
          coords[i] = idx * m_block_dim_sizes[i];
          sizes[i] =
              numext::mini((m_dimensions[i] - coords[i]), m_block_dim_sizes[i]);
          block_index -= idx * m_block_strides[i];
          first_coeff_index += coords[i] * m_tensor_strides[i];
        }
        coords[0] = block_index * m_block_dim_sizes[0];
        sizes[0] =
            numext::mini((m_dimensions[0] - coords[0]), m_block_dim_sizes[0]);
        first_coeff_index += coords[0] * m_tensor_strides[0];

        strides[0] = 1;
        for (int i = 1; i < NumDims; ++i) {
          strides[i] = strides[i - 1] * sizes[i - 1];
        }
      } else {
        for (int i = 0; i < NumDims - 1; ++i) {
          const Index idx = block_index / m_block_strides[i];
          coords[i] = idx * m_block_dim_sizes[i];
          sizes[i] =
              numext::mini((m_dimensions[i] - coords[i]), m_block_dim_sizes[i]);
          block_index -= idx * m_block_strides[i];
          first_coeff_index += coords[i] * m_tensor_strides[i];
        }
        coords[NumDims - 1] = block_index * m_block_dim_sizes[NumDims - 1];
        sizes[NumDims - 1] =
            numext::mini((m_dimensions[NumDims - 1] - coords[NumDims - 1]),
                       m_block_dim_sizes[NumDims - 1]);
        first_coeff_index += coords[NumDims - 1] * m_tensor_strides[NumDims - 1];

        strides[NumDims - 1] = 1;
        for (int i = NumDims - 2; i >= 0; --i) {
          strides[i] = strides[i + 1] * sizes[i + 1];
        }
      }
    }

    return TensorBlock(first_coeff_index, sizes, strides, m_tensor_strides,
                       data);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index total_block_count() const {
    return m_total_block_count;
  }

 private:
  DSizes<Index, NumDims> m_dimensions;
  DSizes<Index, NumDims> m_block_dim_sizes;
  DSizes<Index, NumDims> m_block_strides;
  DSizes<Index, NumDims> m_tensor_strides;
  Index m_total_block_count;
};

/** \class TensorSliceBlockMapper
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor slice block mapper class.
  *
  * This class is responsible for iterating over the blocks of
  * a slice of a tensor. Supports shuffling of the block strides
  * for callers that want to reduce strides for dimensions to be
  * processed together.
  *
  */

template <typename Index, typename Scalar, std::size_t NumDims, int Layout>
class TensorSliceBlockMapper {
 public:
  typedef typename internal::TensorBlock<Index, Scalar, NumDims, Layout>
      TensorBlock;
  typedef DSizes<Index, NumDims> Dimensions;

  TensorSliceBlockMapper(const Dimensions& tensor_dims,
                         const Dimensions& tensor_slice_offsets,
                         const Dimensions& tensor_slice_extents,
                         const Dimensions& block_dim_sizes,
                         const Dimensions& block_stride_order)
      : m_tensor_dimensions(tensor_dims),
        m_tensor_slice_offsets(tensor_slice_offsets),
        m_tensor_slice_extents(tensor_slice_extents),
        m_block_dim_sizes(block_dim_sizes),
        m_block_stride_order(block_stride_order),
        m_total_block_count(1) {
    // Calculate block counts by dimension and total block count.
    DSizes<Index, NumDims> block_count;
    for (size_t i = 0; i < block_count.rank(); ++i) {
      block_count[i] = (m_tensor_slice_extents[i] + m_block_dim_sizes[i] - 1) /
          m_block_dim_sizes[i];
    }
    m_total_block_count = array_prod(block_count);

    // Calculate block strides (used for enumerating blocks).
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_block_strides[0] = 1;
      m_tensor_strides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_block_strides[i] = m_block_strides[i - 1] * block_count[i - 1];
        m_tensor_strides[i] = m_tensor_strides[i - 1] *
            m_tensor_dimensions[i - 1];
      }
    } else {
      m_block_strides[NumDims - 1] = 1;
      m_tensor_strides[NumDims - 1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_block_strides[i] = m_block_strides[i + 1] * block_count[i + 1];
        m_tensor_strides[i] = m_tensor_strides[i + 1] *
            m_tensor_dimensions[i + 1];
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
  GetBlockForIndex(Index block_index, Scalar* data) const {
    Index first_coeff_index = 0;
    DSizes<Index, NumDims> coords;
    DSizes<Index, NumDims> sizes;
    DSizes<Index, NumDims> strides;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx = block_index / m_block_strides[i];
        coords[i] = m_tensor_slice_offsets[i] + idx * m_block_dim_sizes[i];
        sizes[i] = numext::mini(m_tensor_slice_offsets[i] + m_tensor_slice_extents[i] - coords[i],
                                m_block_dim_sizes[i]);
        block_index -= idx * m_block_strides[i];
        first_coeff_index += coords[i] * m_tensor_strides[i];
      }
      coords[0] = m_tensor_slice_offsets[0] +
          block_index * m_block_dim_sizes[0];
      sizes[0] = numext::mini(m_tensor_slice_offsets[0] + m_tensor_slice_extents[0] - coords[0],
                                m_block_dim_sizes[0]);
      first_coeff_index += coords[0] * m_tensor_strides[0];

      Index prev_dim = m_block_stride_order[0];
      strides[prev_dim] = 1;
      for (int i = 1; i < NumDims; ++i) {
        const Index curr_dim = m_block_stride_order[i];
        strides[curr_dim] = strides[prev_dim] * sizes[prev_dim];
        prev_dim = curr_dim;
      }
    } else {
      for (int i = 0; i < static_cast<int>(NumDims) - 1; ++i) {
        const Index idx = block_index / m_block_strides[i];
        coords[i] = m_tensor_slice_offsets[i] + idx * m_block_dim_sizes[i];
        sizes[i] = numext::mini(m_tensor_slice_offsets[i] + m_tensor_slice_extents[i] - coords[i],
                                m_block_dim_sizes[i]);
        block_index -= idx * m_block_strides[i];
        first_coeff_index += coords[i] * m_tensor_strides[i];
      }
      coords[NumDims - 1] = m_tensor_slice_offsets[NumDims - 1] +
          block_index * m_block_dim_sizes[NumDims - 1];
      sizes[NumDims - 1] = numext::mini(
          m_tensor_slice_offsets[NumDims - 1] + m_tensor_slice_extents[NumDims - 1] - coords[NumDims - 1],
          m_block_dim_sizes[NumDims - 1]);
      first_coeff_index += coords[NumDims - 1] * m_tensor_strides[NumDims - 1];

      Index prev_dim = m_block_stride_order[NumDims - 1];
      strides[prev_dim] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        const Index curr_dim = m_block_stride_order[i];
        strides[curr_dim] = strides[prev_dim] * sizes[prev_dim];
        prev_dim = curr_dim;
      }
    }

    return TensorBlock(first_coeff_index, sizes, strides, m_tensor_strides,
                       data);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index total_block_count() const {
    return m_total_block_count;
  }

 private:
  Dimensions m_tensor_dimensions;
  Dimensions m_tensor_slice_offsets;
  Dimensions m_tensor_slice_extents;
  Dimensions m_tensor_strides;
  Dimensions m_block_dim_sizes;
  Dimensions m_block_stride_order;
  Dimensions m_block_strides;
  Index m_total_block_count;
};

}  // end namespace internal

}  // end namespace Eigen

#endif  // EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H