aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/CXX11/src/NeuralNetworks/Pooling.h
blob: 942b060ba761a2b31e6affc2d3714564ef243134 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_NEURAL_NETWORKS_POOLING_H
#define EIGEN_CXX11_NEURAL_NETWORKS_POOLING_H

#include "Patch3d.h"

namespace Eigen {

/** SpatialMaxPooling
  * \ingroup CXX11_NeuralNetworks_Module
  *
  * \brief Applies a max-pooling over a multichannel input image.
  *
  * The input parameter is expected to be a with a rank of 4 (channels, height, width, others in col-major, and the reverse of that in row-major).
  *
  * The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, height, width, and others (in col-major, and the reverse of that if the input was row-major).
  *
  * The order of the width and height dimensions can be swapped if needed.
  *
*/
#if !defined(EIGEN_HAS_INDEX_LIST)
template <typename Input>
EIGEN_ALWAYS_INLINE
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::MaxReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, const Eigen::array<int, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
#else
template <typename Input>
EIGEN_ALWAYS_INLINE
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::MaxReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
#endif
SpatialMaxPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols,
                  DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type,
                  DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1)
{
  EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);

  typedef typename internal::traits<Input>::Index TensorIndex;
  TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);

  const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1);
  const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1);

  static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
  static const int idxRows = isColMajor ? 1 : 2;
  static const int idxCols = isColMajor ? 2 : 1;

  // Molds the output of the reduction into the shape expected by the user.
  // (assuming col-major):
  // - 1st dim: channels
  // - 2nd dim: output height
  // - 3rd dim: output width
  // - 4th dim and beyond: everything else including batch size
  Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
  post_reduce_dims[0] = in.dimension(0);
  if (padding_type == PADDING_VALID) {
    post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRowsEff + 1.f) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchColsEff + 1.f) / static_cast<float>(strideCols));
  } else {
    post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
  }
  post_reduce_dims[3] = in.dimension(3);

#if !defined(EIGEN_HAS_INDEX_LIST)
  // nvcc doesn't support cxx11
  Eigen::array<int, 2> reduction_dims;
  if (isColMajor) {
    reduction_dims[0] = 1;
    reduction_dims[1] = 2;
  } else {
    reduction_dims[0] = 2;
    reduction_dims[1] = 3;
  }
#else
  // Take advantage of cxx11 to give the compiler information it can use to
  // optimize the code.
  typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type reduction_dims;
#endif

  return input.extract_image_patches(patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, -Eigen::NumTraits<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>::highest()).maximum(reduction_dims).reshape(post_reduce_dims);
}

/** CuboidMaxPooling
  * \ingroup CXX11_NeuralNetworks_Module
  *
  * \brief Applies a max-pooling over a multichannel input volume.
  *
  * The input parameter is expected to be a tensor with a rank of 5 (channels, depth, height, width, others in col-major, and the reverse of that in row-major).
  *
  * The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, depth, height, width, and others (in col-major, and the reverse of that if the input was row-major).
  *
  * The order of the depth, width and height dimensions can be swapped if needed.
  *
*/
#if !defined(EIGEN_HAS_INDEX_LIST)
template <typename Input>
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
    const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
    const TensorReductionOp<
        internal::MaxReducer<float>, const Eigen::array<int, 1>,
        const TensorReshapingOp<
            const Eigen::DSizes<DenseIndex, 3>,
            const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
#else
template <typename Input>
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
    const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
    const TensorReductionOp<
        internal::MaxReducer<float>,
        const Eigen::IndexList<Eigen::type2index<1> >,
        const TensorReshapingOp<
            const Eigen::DSizes<DenseIndex, 3>,
            const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
#endif
CuboidMaxPooling(const Input& input, DenseIndex patchPlanes,
                 DenseIndex patchRows, DenseIndex patchCols,
                 DenseIndex stridePlanes, DenseIndex strideRows,
                 DenseIndex strideCols, const PaddingType padding_type) {
  EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE);
  static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);

  typedef typename internal::traits<Input>::Index TensorIndex;
  TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);

  static const int idxPlanes = isColMajor ? 1 : 3;
  static const int idxRows = 2;
  static const int idxCols = isColMajor ? 3 : 1;

  // Molds the output of the reduction into the shape expected by the used
  // (assuming col-major):
  // - 1st dim: channels
  // - 2nd dim: output depth
  // - 3rd dim: output height
  // - 4th dim: output width
  // - 5th dim and beyond: everything else including batch size
  Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
  post_reduce_dims[0] = in.dimension(0);
  if (padding_type == PADDING_VALID) {
    post_reduce_dims[idxPlanes] = numext::ceil((in.dimension(idxPlanes) - patchPlanes + 1.f) / static_cast<float>(stridePlanes));
    post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRows + 1.f) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchCols + 1.f) / static_cast<float>(strideCols));
  } else {
    post_reduce_dims[idxPlanes] = numext::ceil(in.dimension(idxPlanes) / static_cast<float>(stridePlanes));
    post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
  }
  post_reduce_dims[4] = in.dimension(4);

  Eigen::DSizes<DenseIndex, 3> pre_reduce_dims;
  pre_reduce_dims[1] = patchRows * patchCols * patchPlanes;
  if (isColMajor) {
    pre_reduce_dims[0] = post_reduce_dims[0];
    pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4];
  } else {
    pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3];
    pre_reduce_dims[2] = post_reduce_dims[4];
  }

#if !defined(EIGEN_HAS_INDEX_LIST)
  // nvcc doesn't support cxx11
  Eigen::array<int, 1> reduction_dims;
  reduction_dims[0] = 1;
#else
  // Take advantage of cxx11 to give the compiler information it can use to
  // optimize the code.
  Eigen::IndexList<Eigen::type2index<1> > reduction_dims;
#endif
  return input.extract_volume_patches(patchPlanes, patchRows, patchCols,
                                      stridePlanes, strideRows, strideCols,
                                      padding_type, -Eigen::NumTraits<float>::highest())
      .reshape(pre_reduce_dims)
      .maximum(reduction_dims)
      .reshape(post_reduce_dims);
}


/** SpatialAvgPooling
  * \ingroup CXX11_NeuralNetworks_Module
  *
  * \brief Applies an average pooling over a multichannel input image.
  *
  * The input parameter is expected to be a tensor with a rank of 4 (channels, height, width, others in col-major, and the reverse of that in row-major).
  *
  * The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, height, width, and others (in col-major, and the reverse of that if the input was row-major).
  *
  * The order of the width and height dimensions can be swapped if needed.
  *
*/
namespace internal {

template <typename T> struct AvgPoolMeanReducer
{
#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__)
  // We only support packet access for floats.
  static const bool PacketAccess = internal::is_same<T, float>::value;
#else
  static const bool PacketAccess = false;
#endif
  static const bool IsStateful = true;

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE AvgPoolMeanReducer() : scalarCount_(0) {
    typedef typename packet_traits<T>::type Packet;
    packetCount_ = pset1<Packet>(0.0);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) {
    if (t != -Eigen::NumTraits<T>::highest()) {
      (*accum) = (*accum) + t;
      scalarCount_++;
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
    return static_cast<T>(0);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
    eigen_assert(scalarCount_ > 0);
    return accum / scalarCount_;
  }

#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__)
#ifdef EIGEN_VECTORIZE_AVX
#define pequal(a,b) _mm256_cmp_ps(a,b,_CMP_EQ_UQ)
#define psel(a,b,false_mask) _mm256_blendv_ps(a,b,false_mask)
#else
#define pequal(a,b) _mm_cmpeq_ps(a,b)
#define psel(a,b,false_mask) _mm_or_ps(_mm_andnot_ps(false_mask, a), _mm_and_ps(false_mask, b))
#endif

  template <typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) {
    reducePacketWithType(static_cast<T>(0), p, accum);
  }

  template <typename Packet>
  void reducePacketWithType(T, const Packet& p, Packet* accum) {
    Packet skip_mask = pequal(p, pset1<Packet>(-Eigen::NumTraits<T>::highest()));
    (*accum) = padd<Packet>(*accum, psel(p, pset1<Packet>(0), skip_mask));
    packetCount_ = padd<Packet>(packetCount_, psel(pset1<Packet>(1), pset1<Packet>(0), skip_mask));
  }

  template <typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
    return pset1<Packet>(0);
  }

  template <typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
    return pdiv(vaccum, packetCount_);
  }
  template <typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
    return (saccum + predux(vaccum)) / (scalarCount_ + predux(packetCount_));
  }
#endif

 protected:
    typedef typename packet_traits<T>::type Packet;
    int scalarCount_;
    Packet packetCount_;
};

}  // namespace internal

#if !defined(EIGEN_HAS_INDEX_LIST)
template <typename Input>
EIGEN_ALWAYS_INLINE
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::AvgPoolMeanReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, const Eigen::array<int, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
#else
template <typename Input>
EIGEN_ALWAYS_INLINE
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::AvgPoolMeanReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
#endif
SpatialAvgPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols,
                  DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type,
                  DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1)
{
  EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);

  typedef typename internal::traits<Input>::Index TensorIndex;
  TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);

  const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1);
  const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1);

  static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
  static const int idxRows = isColMajor ? 1 : 2;
  static const int idxCols = isColMajor ? 2 : 1;

  // Molds the output of the reduction into the shape expected by the user.
  // (assuming col-major):
  // - 1st dim: channels
  // - 2nd dim: output height
  // - 3rd dim: output width
  // - 4th dim and beyond: everything else including batch size
  Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
  post_reduce_dims[0] = in.dimension(0);
  if (padding_type == PADDING_VALID) {
    post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRowsEff + 1.f) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchColsEff + 1.f) / static_cast<float>(strideCols));
  } else {
    post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
  }
  post_reduce_dims[3] = in.dimension(3);

  typedef typename internal::remove_const<typename internal::traits<Input>::Scalar>::type CoeffReturnType;
  internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan;

#if !defined(EIGEN_HAS_INDEX_LIST)
  // nvcc doesn't support cxx11
  Eigen::array<int, 2> reduction_dims;
  if (isColMajor) {
    reduction_dims[0] = 1;
    reduction_dims[1] = 2;
  } else {
    reduction_dims[0] = 2;
    reduction_dims[1] = 3;
  }
#else
  // Take advantage of cxx11 to give the compiler information it can use to
  // optimize the code.
  typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type reduction_dims;
#endif
  return input.extract_image_patches(patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, -Eigen::NumTraits<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>::highest()).reduce(reduction_dims, mean_with_nan).reshape(post_reduce_dims);
}


/** CuboidAvgPooling
  * \ingroup CXX11_NeuralNetworks_Module
  *
  * \brief Applies an average pooling over a multichannel input volume.
  *
  * The input parameter is expected to be a tensor with a rank of 5 (channels, depth, height, width, others, and the reverse of that in row-major).
  *
  * The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, depth, width, and others (in col-major, and the reverse of that if the input was row-major).
  *
  * The order of the depth, width and height dimensions can be swapped if needed.
  *
*/
#if !defined(EIGEN_HAS_INDEX_LIST)
template <typename Input>
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
    const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
    const TensorReductionOp<
        internal::AvgPoolMeanReducer<float>, const Eigen::array<int, 1>,
        const TensorReshapingOp<
            const Eigen::DSizes<DenseIndex, 3>,
            const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
#else
template <typename Input>
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
      const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
      const TensorReductionOp<
          internal::AvgPoolMeanReducer<float>,
          const Eigen::IndexList<Eigen::type2index<1> >,
          const TensorReshapingOp<
              const Eigen::DSizes<DenseIndex, 3>,
              const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
#endif
CuboidAvgPooling(const Input& input, DenseIndex patchPlanes,
                 DenseIndex patchRows, DenseIndex patchCols,
                 DenseIndex stridePlanes, DenseIndex strideRows,
                 DenseIndex strideCols, const PaddingType padding_type) {
  EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE);
  static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);

  typedef typename internal::traits<Input>::Index TensorIndex;
  TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);

  static const int idxPlanes = isColMajor ? 1 : 3;
  static const int idxRows = 2;
  static const int idxCols = isColMajor ? 3 : 1;
  // Molds the output of the reduction into the shape expected by the used
  // (assuming col-major):
  // - 1st dim: channels
  // - 2nd dim: outupt depth
  // - 3rd dim: output height
  // - 4th dim: output width
  // - 5th dim and beyond: everything else including batch size
  Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
  post_reduce_dims[0] = in.dimension(0);
  if (padding_type == PADDING_VALID) {
    post_reduce_dims[idxPlanes] = numext::ceil((in.dimension(idxPlanes) - patchPlanes + 1.f) / static_cast<float>(stridePlanes));
    post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRows + 1.f) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchCols + 1.f) / static_cast<float>(strideCols));
  } else {
    post_reduce_dims[idxPlanes] = numext::ceil(in.dimension(idxPlanes) / static_cast<float>(stridePlanes));
    post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
    post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
  }
  post_reduce_dims[4] = in.dimension(4);

  Eigen::DSizes<DenseIndex, 3> pre_reduce_dims;
  pre_reduce_dims[1] = patchRows * patchCols * patchPlanes;
  if (isColMajor) {
    pre_reduce_dims[0] = post_reduce_dims[0];
    pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4];
  } else {
    pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3];
    pre_reduce_dims[2] = post_reduce_dims[4];
  }

  typedef typename internal::remove_const<typename internal::traits<Input>::Scalar>::type CoeffReturnType;
  internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan;

#if !defined(EIGEN_HAS_INDEX_LIST)
  // nvcc doesn't support cxx11
  Eigen::array<int, 1> reduction_dims;
  reduction_dims[0] = 1;
#else
  // Take advantage of cxx11 to give the compiler information it can use to
  // optimize the code.
  Eigen::IndexList<Eigen::type2index<1> > reduction_dims;
#endif
  return input.extract_volume_patches(patchPlanes, patchRows, patchCols,
                                      stridePlanes, strideRows, strideCols,
                                      padding_type, -Eigen::NumTraits<float>::highest())
      .reshape(pre_reduce_dims)
      .reduce(reduction_dims, mean_with_nan)
      .reshape(post_reduce_dims);
}

} // end namespace Eigen

#endif // EIGEN_CXX11_NEURAL_NETWORKS_POOLING_H