aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/CXX11/src/NeuralNetworks/Attention.h
blob: d4bc7a3515a91fc5048a811fd710507cd7692e66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_NEURAL_NETWORKS_ATTENTION_H
#define EIGEN_CXX11_NEURAL_NETWORKS_ATTENTION_H

namespace Eigen {

/** ExtractGlimpses
  * \ingroup CXX11_NeuralNetworks_Module
  *
  * \brief Extract glimpses from an input tensor.
  *
  * The input parameter is expected to be a col-major tensor with a rank of 4 (depth, x, y, and batch).
  * The width and height parameters specify the extension of the returned glimpses.
  * The offsets parameter specifies the x, y locations of the center of the glimpses relative to the center of the input image. The vector is expected to contain one IndexPair for each image in the batch dimension.
  * The normalized boolean indicates if incoming coordinates are normalized so that 0.0 and 1.0 correspond to the minimum and maximum of each height and width dimension.
  * The centered boolean indicates if incoming coordinates are centered relative to the image, in which case -1.0 and 1.0 correspond to minimum and maximum of each dimension while 0.0 corresponds to the center.
  *
  * The result can be assigned to a tensor of rank equal to that of the input. The result will be laid out in col-major order (depth, x, y, batch).
  * The dimensions of the result will be equal to the dimensions of the input except for width and height which will be equal to the requested glimpse size.
  */
namespace {
template <typename Index>
struct GlimpseExtractionOp {
  GlimpseExtractionOp(const Index width, const Index height,
                      const std::vector<IndexPair<float> >& offsets,
                      const bool normalized,
                      const bool centered,
                      const bool uniform_noise) :
      width_(width), height_(height), offsets_(offsets),
      normalized_(normalized), centered_(centered), uniform_noise_(uniform_noise) { }

  template <typename Input>
  DSizes<Index, 4> dimensions(const Input& input) const {
    typedef typename internal::traits<Input>::Index IndexType;
    typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4,
                             internal::traits<Input>::Layout, IndexType> > Ref;
    Ref in(input);

    DSizes<Index, 4> dims = in.dimensions();

    dims[0] = in.dimension(0);
    dims[1] = width_;
    dims[2] = height_;
    dims[3] = in.dimension(3);
    return dims;
  }

  template <typename Input, typename Output, typename Device>
  EIGEN_DEVICE_FUNC
  void eval(const Input& input, Output& output, const Device& device) const
  {
    typedef typename internal::traits<Input>::Index IndexType;
    typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4,
                             internal::traits<Input>::Layout, IndexType> > Ref;
    Ref in(input);

    const Index num_channels = in.dimension(0);
    const Index input_width = in.dimension(1);
    const Index input_height = in.dimension(2);
    const Index batch_size = in.dimension(3);
    eigen_assert(input_width > 0);
    eigen_assert(input_height > 0);

    for (Index i = 0; i < batch_size; ++i) {
      float x = offsets_[i].first, y = offsets_[i].second;

      // Un-normalize coordinates back to pixel space if normalized.
      if (normalized_) {
        x *= input_width;
        y *= input_height;
      }
      // Un-center if coordinates are centered on the image center.
      if (centered_) {
        x /= 2.0f;
        y /= 2.0f;
        x += input_width / 2.0f;
        y += input_height / 2.0f;
      }
      // Remove half of the glimpse window.
      x -= width_ / 2.0f;
      y -= height_ / 2.0f;

      const Index offset_x = (Index) x;
      const Index offset_y = (Index) y;
      Index glimpse_width = width_;
      Index glimpse_height = height_;
      bool partial_overlap = false;
      DSizes<Index, 3> slice_offset(0, offset_x, offset_y);
      DSizes<Index, 3> slice_extent(num_channels, width_, height_);
      DSizes<Index, 3> base_offset(0, 0, 0);

      if (offset_x < 0) {
        slice_offset[1] = 0;
        glimpse_width = (std::max<Index>)(0, width_ + offset_x);
        slice_extent[1] = glimpse_width;
        base_offset[1] = width_ - glimpse_width;
        partial_overlap = true;
      } else if (offset_x + width_ >= input_width) {
        glimpse_width = (std::max<Index>)(0, input_width - offset_x);
        slice_extent[1] = glimpse_width;
        partial_overlap = true;
      }
      if (offset_y < 0) {
        slice_offset[2] = 0;
        glimpse_height = (std::max<Index>)(0, height_ + offset_y);
        slice_extent[2] = glimpse_height;
        base_offset[2] = height_ - glimpse_height;
        partial_overlap = true;
      } else if (offset_y + height_ >= input_height) {
        glimpse_height = (std::max<Index>)(0, input_height - offset_y);
        slice_extent[2] = glimpse_height;
        partial_overlap = true;
      }
      slice_extent[1] = std::min<Index>(input_width, slice_extent[1]);
      slice_extent[2] = std::min<Index>(input_height, slice_extent[2]);

      if (partial_overlap) {
        if (uniform_noise_) {
          // Initialize the glimpse with uniform noise.
          typedef typename internal::remove_const<
            typename internal::traits<Input>::Scalar>::type Scalar;
          TensorFixedSize<Scalar, Sizes<> > mini;
          mini.device(device) = input.template chip<3>(i).minimum();
          TensorFixedSize<float, Sizes<> > range;
          range.device(device) =
              (input.template chip<3>(i).maximum() - mini).template cast<float>();

          DSizes<Index, 3> glimpse_size(num_channels, width_, height_);
          TensorMap<Tensor<float, 3> > tmp(NULL, glimpse_size);
          output.template chip<3>(i).device(device) =
              mini.reshape(Sizes<1,1,1>()).broadcast(glimpse_size) +
              (tmp.random() * range.reshape(Sizes<1,1,1>()).broadcast(glimpse_size)).template cast<Scalar>();
        } else {
          // Initialize the glimpse with white noise: compute the mean and sigma
          // of each channel, and use them to shape the gaussian.
          DSizes<Index, 2> glimpse_size(width_, height_);
          DSizes<Index, 2> input_size(input_width, input_height);
          typedef typename internal::remove_const<
            typename internal::traits<Input>::Scalar>::type Scalar;

          for (int j = 0; j < num_channels; ++j) {
            TensorFixedSize<Scalar, Sizes<> > mean;
            mean.device(device) = input.template chip<3>(i).template chip<0>(j).template cast<float>().mean();
            TensorFixedSize<float, Sizes<> > sigma;
            sigma.device(device) =
                (input.template chip<3>(i).template chip<0>(j).template cast<float>() - mean.reshape(Sizes<1,1>()).broadcast(input_size)).square().mean().sqrt();
            TensorFixedSize<Scalar, Sizes<> > mini;
            mini.device(device) = input.template chip<3>(i).template chip<0>(j).minimum();
            TensorFixedSize<float, Sizes<> > maxi;
            maxi.device(device) = input.template chip<3>(i).template chip<0>(j).maximum();

            TensorMap<Tensor<float, 2> > tmp(NULL, glimpse_size);
            output.template chip<3>(i).template chip<0>(j).device(device) =
                (mean.reshape(Sizes<1,1>()).broadcast(glimpse_size) +
                 (tmp.random(internal::NormalRandomGenerator<float>()) * sigma.reshape(Sizes<1,1>()).broadcast(glimpse_size)).template cast<Scalar>()).cwiseMin(maxi.reshape(Sizes<1,1>()).broadcast(glimpse_size)).cwiseMax(mini.reshape(Sizes<1,1>()).broadcast(glimpse_size));
          }
        }

        // Copy the part of the glimpse that cover the input image if any.
        if (glimpse_width == 0 || glimpse_height == 0) {
          continue;
        }
        output.template chip<3>(i).slice(base_offset, slice_extent).device(device) = input.template chip<3>(i).slice(slice_offset, slice_extent);
      } else {
        output.template chip<3>(i).device(device) = input.template chip<3>(i).slice(slice_offset, slice_extent);
      }
    }
  }

 private:
  const Index width_;
  const Index height_;
  const std::vector<IndexPair<float> > offsets_;
  const bool normalized_;
  const bool centered_;
  const bool uniform_noise_;
};
}


template <typename Input>
EIGEN_ALWAYS_INLINE
static const TensorCustomUnaryOp<const GlimpseExtractionOp<typename internal::traits<Input>::Index>, const Input>
ExtractGlimpses(const Input& input,
                const typename internal::traits<Input>::Index width,
                const typename internal::traits<Input>::Index height,
                const std::vector<IndexPair<float> >& offsets,
                const bool normalized = true, const bool centered = true,
                const bool uniform_noise = true)
{
  EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == ColMajor, YOU_MADE_A_PROGRAMMING_MISTAKE);
  EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);

  typedef typename internal::traits<Input>::Index Index;
  const GlimpseExtractionOp<Index> op(width, height, offsets, normalized,
                                      centered, uniform_noise);
  return input.customOp(op);
}

} // end namespace Eigen

#endif // EIGEN_CXX11_NEURAL_NETWORKS_ATTENTION_H