aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/Eigen/src/Core/AssignEvaluator.h
blob: b1e304e2b17e66180d48ce087e48f1d80a52c149 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H

namespace Eigen {

// This implementation is based on Assign.h

namespace internal {
  
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling       *
***************************************************************************/

// copy_using_evaluator_traits is based on assign_traits

template <typename Derived, typename OtherDerived>
struct copy_using_evaluator_traits
{
public:
  enum {
    DstIsAligned = Derived::Flags & AlignedBit,
    DstHasDirectAccess = Derived::Flags & DirectAccessBit,
    SrcIsAligned = OtherDerived::Flags & AlignedBit,
    JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned,
    SrcEvalBeforeAssign = (evaluator_traits<OtherDerived>::HasEvalTo == 1)
  };

private:
  enum {
    InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
              : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
              : int(Derived::RowsAtCompileTime),
    InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
              : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
              : int(Derived::MaxRowsAtCompileTime),
    MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
    PacketSize = packet_traits<typename Derived::Scalar>::size
  };

  enum {
    StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
    MightVectorize = StorageOrdersAgree
                  && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
    MayInnerVectorize  = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
                       && int(DstIsAligned) && int(SrcIsAligned),
    MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
    MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
                       && (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
      /* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
         so it's only good for large enough sizes. */
    MaySliceVectorize  = MightVectorize && DstHasDirectAccess
                       && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
      /* slice vectorization can be slow, so we only want it if the slices are big, which is
         indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
         in a fixed-size matrix */
  };

public:
  enum {
    Traversal = int(SrcEvalBeforeAssign) ? int(AllAtOnceTraversal) 
              : int(MayInnerVectorize)   ? int(InnerVectorizedTraversal)
              : int(MayLinearVectorize)  ? int(LinearVectorizedTraversal)
              : int(MaySliceVectorize)   ? int(SliceVectorizedTraversal)
              : int(MayLinearize)        ? int(LinearTraversal)
                                         : int(DefaultTraversal),
    Vectorized = int(Traversal) == InnerVectorizedTraversal
              || int(Traversal) == LinearVectorizedTraversal
              || int(Traversal) == SliceVectorizedTraversal
  };

private:
  enum {
    UnrollingLimit      = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
    MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
                       && int(OtherDerived::CoeffReadCost) != Dynamic
                       && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
    MayUnrollInner      = int(InnerSize) != Dynamic
                       && int(OtherDerived::CoeffReadCost) != Dynamic
                       && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
  };

public:
  enum {
    Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
                ? (
                    int(MayUnrollCompletely) ? int(CompleteUnrolling)
                  : int(MayUnrollInner)      ? int(InnerUnrolling)
                                             : int(NoUnrolling)
                  )
              : int(Traversal) == int(LinearVectorizedTraversal)
                ? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) 
                                                                    : int(NoUnrolling) )
              : int(Traversal) == int(LinearTraversal)
                ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) 
                                              : int(NoUnrolling) )
              : int(NoUnrolling)
  };

#ifdef EIGEN_DEBUG_ASSIGN
  static void debug()
  {
    EIGEN_DEBUG_VAR(DstIsAligned)
    EIGEN_DEBUG_VAR(SrcIsAligned)
    EIGEN_DEBUG_VAR(JointAlignment)
    EIGEN_DEBUG_VAR(InnerSize)
    EIGEN_DEBUG_VAR(InnerMaxSize)
    EIGEN_DEBUG_VAR(PacketSize)
    EIGEN_DEBUG_VAR(StorageOrdersAgree)
    EIGEN_DEBUG_VAR(MightVectorize)
    EIGEN_DEBUG_VAR(MayLinearize)
    EIGEN_DEBUG_VAR(MayInnerVectorize)
    EIGEN_DEBUG_VAR(MayLinearVectorize)
    EIGEN_DEBUG_VAR(MaySliceVectorize)
    EIGEN_DEBUG_VAR(Traversal)
    EIGEN_DEBUG_VAR(UnrollingLimit)
    EIGEN_DEBUG_VAR(MayUnrollCompletely)
    EIGEN_DEBUG_VAR(MayUnrollInner)
    EIGEN_DEBUG_VAR(Unrolling)
  }
#endif
};

/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/

/************************
*** Default traversal ***
************************/

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
  typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
  typedef typename DstEvaluatorType::XprType DstXprType;
  
  enum {
    outer = Index / DstXprType::InnerSizeAtCompileTime,
    inner = Index % DstXprType::InnerSizeAtCompileTime
  };

  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    kernel.assignCoeffByOuterInner(outer, inner);
    copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
  static EIGEN_STRONG_INLINE void run(Kernel&) { }
};

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
  static EIGEN_STRONG_INLINE void run(Kernel &kernel, int outer)
  {
    kernel.assignCoeffByOuterInner(outer, Index);
    copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index+1, Stop>::run(kernel, outer);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
{
  static EIGEN_STRONG_INLINE void run(Kernel&, int) { }
};

/***********************
*** Linear traversal ***
***********************/

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
  static EIGEN_STRONG_INLINE void run(Kernel& kernel)
  {
    kernel.assignCoeff(Index);
    copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
  static EIGEN_STRONG_INLINE void run(Kernel&) { }
};

/**************************
*** Inner vectorization ***
**************************/

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
  typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
  typedef typename DstEvaluatorType::XprType DstXprType;

  enum {
    outer = Index / DstXprType::InnerSizeAtCompileTime,
    inner = Index % DstXprType::InnerSizeAtCompileTime,
    JointAlignment = Kernel::AssignmentTraits::JointAlignment
  };

  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    kernel.template assignPacketByOuterInner<Aligned, JointAlignment>(outer, inner);
    enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
    copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
{
  static EIGEN_STRONG_INLINE void run(Kernel&) { }
};

template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling
{
  static EIGEN_STRONG_INLINE void run(Kernel &kernel, int outer)
  {
    kernel.template assignPacketByOuterInner<Aligned, Aligned>(outer, Index);
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
    copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop>::run(kernel, outer);
  }
};

template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop>
{
  static EIGEN_STRONG_INLINE void run(Kernel &, int) { }
};

/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/

// dense_assignment_loop is based on assign_impl

template<typename Kernel,
         int Traversal = Kernel::AssignmentTraits::Traversal,
         int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop;

/************************
*** Default traversal ***
************************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
{
  static void run(Kernel &kernel)
  {
    typedef typename Kernel::Index Index;
    
    for(Index outer = 0; outer < kernel.outerSize(); ++outer) {
      for(Index inner = 0; inner < kernel.innerSize(); ++inner) {
        kernel.assignCoeffByOuterInner(outer, inner);
      }
    }
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling>
{
  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling>
{
  typedef typename Kernel::Index Index;
  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;

    const Index outerSize = kernel.outerSize();
    for(Index outer = 0; outer < outerSize; ++outer)
      copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
  }
};

/***************************
*** Linear vectorization ***
***************************/


// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts

template <bool IsAligned = false>
struct unaligned_dense_assignment_loop
{
  // if IsAligned = true, then do nothing
  template <typename Kernel>
  static EIGEN_STRONG_INLINE void run(Kernel&, typename Kernel::Index, typename Kernel::Index) {}
};

template <>
struct unaligned_dense_assignment_loop<false>
{
  // MSVC must not inline this functions. If it does, it fails to optimize the
  // packet access path.
  // FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
  template <typename Kernel>
  static EIGEN_DONT_INLINE void run(Kernel &kernel,
                                    typename Kernel::Index start,
                                    typename Kernel::Index end)
#else
  template <typename Kernel>
  static EIGEN_STRONG_INLINE void run(Kernel &kernel,
                                      typename Kernel::Index start,
                                      typename Kernel::Index end)
#endif
  {
    for (typename Kernel::Index index = start; index < end; ++index)
      kernel.assignCoeff(index);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
{
  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::Index Index;

    const Index size = kernel.size();
    typedef packet_traits<typename Kernel::Scalar> PacketTraits;
    enum {
      packetSize = PacketTraits::size,
      dstIsAligned = int(Kernel::AssignmentTraits::DstIsAligned),
      dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : dstIsAligned,
      srcAlignment = Kernel::AssignmentTraits::JointAlignment
    };
    const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned(&kernel.dstEvaluator().coeffRef(0), size);
    const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;

    unaligned_dense_assignment_loop<dstIsAligned!=0>::run(kernel, 0, alignedStart);

    for(Index index = alignedStart; index < alignedEnd; index += packetSize)
      kernel.template assignPacket<dstAlignment, srcAlignment>(index);

    unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
{
  typedef typename Kernel::Index Index;
  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    
    enum { size = DstXprType::SizeAtCompileTime,
           packetSize = packet_traits<typename Kernel::Scalar>::size,
           alignedSize = (size/packetSize)*packetSize };

    copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, alignedSize>::run(kernel);
    copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, alignedSize, size>::run(kernel);
  }
};

/**************************
*** Inner vectorization ***
**************************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
{
  static inline void run(Kernel &kernel)
  {
    typedef typename Kernel::Index Index;

    const Index innerSize = kernel.innerSize();
    const Index outerSize = kernel.outerSize();
    const Index packetSize = packet_traits<typename Kernel::Scalar>::size;
    for(Index outer = 0; outer < outerSize; ++outer)
      for(Index inner = 0; inner < innerSize; inner+=packetSize)
        kernel.template assignPacketByOuterInner<Aligned, Aligned>(outer, inner);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling>
{
  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
{
  typedef typename Kernel::Index Index;
  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    const Index outerSize = kernel.outerSize();
    for(Index outer = 0; outer < outerSize; ++outer)
      copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
  }
};

/***********************
*** Linear traversal ***
***********************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
{
  static inline void run(Kernel &kernel)
  {
    typedef typename Kernel::Index Index;
    const Index size = kernel.size();
    for(Index i = 0; i < size; ++i)
      kernel.assignCoeff(i);
  }
};

template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
{
  static EIGEN_STRONG_INLINE void run(Kernel &kernel)
  {
    typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
    copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
  }
};

/**************************
*** Slice vectorization ***
***************************/

template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
{
  static inline void run(Kernel &kernel)
  {
    typedef typename Kernel::Index Index;
    typedef packet_traits<typename Kernel::Scalar> PacketTraits;
    enum {
      packetSize = PacketTraits::size,
      alignable = PacketTraits::AlignedOnScalar,
      dstAlignment = alignable ? Aligned : int(Kernel::AssignmentTraits::DstIsAligned)
    };
    const Index packetAlignedMask = packetSize - 1;
    const Index innerSize = kernel.innerSize();
    const Index outerSize = kernel.outerSize();
    const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0;
    Index alignedStart = ((!alignable) || Kernel::AssignmentTraits::DstIsAligned) ? 0
                       : internal::first_aligned(&kernel.dstEvaluator().coeffRef(0,0), innerSize);

    for(Index outer = 0; outer < outerSize; ++outer)
    {
      const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
      // do the non-vectorizable part of the assignment
      for(Index inner = 0; inner<alignedStart ; ++inner)
        kernel.assignCoeffByOuterInner(outer, inner);

      // do the vectorizable part of the assignment
      for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
        kernel.template assignPacketByOuterInner<dstAlignment, Unaligned>(outer, inner);

      // do the non-vectorizable part of the assignment
      for(Index inner = alignedEnd; inner<innerSize ; ++inner)
        kernel.assignCoeffByOuterInner(outer, inner);

      alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
    }
  }
};

/****************************
*** All-at-once traversal ***
****************************/

// TODO: this 'AllAtOnceTraversal' should be dropped or caught earlier (Gael)
// Indeed, what to do with the kernel's functor??
template<typename Kernel>
struct dense_assignment_loop<Kernel, AllAtOnceTraversal, NoUnrolling>
{
  static inline void run(Kernel & kernel)
  {
    // Evaluate rhs in temporary to prevent aliasing problems in a = a * a;
    // TODO: Do not pass the xpr object to evalTo() (Jitse)
    kernel.srcEvaluator().evalTo(kernel.dstEvaluator(), kernel.dstExpression());
  }
};

/***************************************************************************
* Part 4 : Generic Assignment routine
***************************************************************************/

// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor>
class generic_dense_assignment_kernel
{
protected:
  typedef typename DstEvaluatorTypeT::XprType DstXprType;
  typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
  
  typedef DstEvaluatorTypeT DstEvaluatorType;
  typedef SrcEvaluatorTypeT SrcEvaluatorType;
  typedef typename DstEvaluatorType::Scalar Scalar;
  typedef typename DstEvaluatorType::Index Index;
  typedef copy_using_evaluator_traits<DstXprType, SrcXprType> AssignmentTraits;
  
  
  generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
    : m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
  {}
  
  Index size() const        { return m_dstExpr.size(); }
  Index innerSize() const   { return m_dstExpr.innerSize(); }
  Index outerSize() const   { return m_dstExpr.outerSize(); }
  Index outerStride() const { return m_dstExpr.outerStride(); }
  
  // TODO get rid of this one:
  DstXprType& dstExpression() const { return m_dstExpr; }
  
  DstEvaluatorType& dstEvaluator() { return m_dst; }
  const SrcEvaluatorType& srcEvaluator() const { return m_src; }
  
  void assignCoeff(Index row, Index col)
  {
    m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
  }
  
  void assignCoeff(Index index)
  {
    m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
  }
  
  void assignCoeffByOuterInner(Index outer, Index inner)
  {
    Index row = rowIndexByOuterInner(outer, inner); 
    Index col = colIndexByOuterInner(outer, inner); 
    assignCoeff(row, col);
  }
  
  
  template<int StoreMode, int LoadMode>
  void assignPacket(Index row, Index col)
  {
    m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row,col), m_src.template packet<LoadMode>(row,col));
  }
  
  template<int StoreMode, int LoadMode>
  void assignPacket(Index index)
  {
    m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode>(index));
  }
  
  template<int StoreMode, int LoadMode>
  void assignPacketByOuterInner(Index outer, Index inner)
  {
    Index row = rowIndexByOuterInner(outer, inner); 
    Index col = colIndexByOuterInner(outer, inner);
    assignPacket<StoreMode,LoadMode>(row, col);
  }
  
  static Index rowIndexByOuterInner(Index outer, Index inner)
  {
    typedef typename DstEvaluatorType::ExpressionTraits Traits;
    return int(Traits::RowsAtCompileTime) == 1 ? 0
      : int(Traits::ColsAtCompileTime) == 1 ? inner
      : int(Traits::Flags)&RowMajorBit ? outer
      : inner;
  }

  static Index colIndexByOuterInner(Index outer, Index inner)
  {
    typedef typename DstEvaluatorType::ExpressionTraits Traits;
    return int(Traits::ColsAtCompileTime) == 1 ? 0
      : int(Traits::RowsAtCompileTime) == 1 ? inner
      : int(Traits::Flags)&RowMajorBit ? inner
      : outer;
  }
  
protected:
  DstEvaluatorType& m_dst;
  const SrcEvaluatorType& m_src;
  const Functor &m_functor;
  // TODO find a way to avoid the needs of the original expression
  DstXprType& m_dstExpr;
};

template<typename DstXprType, typename SrcXprType, typename Functor>
void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func)
{
#ifdef EIGEN_DEBUG_ASSIGN
  // TODO these traits should be computed from information provided by the evaluators
  internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
#endif
  eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
  
  typedef typename evaluator<DstXprType>::type DstEvaluatorType;
  typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;

  DstEvaluatorType dstEvaluator(dst);
  SrcEvaluatorType srcEvaluator(src);
    
  typedef generic_dense_assignment_kernel<DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
  Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
  
  dense_assignment_loop<Kernel>::run(kernel);
}

template<typename DstXprType, typename SrcXprType>
void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src)
{
  call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar>());
}

/***************************************************************************
* Part 5 : Entry points
***************************************************************************/

// Based on DenseBase::LazyAssign()
// The following functions are just for testing and they are meant to be moved to operator= and the likes.

template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, 
                                       const EigenBase<SrcXprType>& src)
{
  return noalias_copy_using_evaluator(dst.expression(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
}

template<typename XprType, int AssumeAliasing = evaluator_traits<XprType>::AssumeAliasing>
struct AddEvalIfAssumingAliasing;

template<typename XprType>
struct AddEvalIfAssumingAliasing<XprType, 0>
{
  static const XprType& run(const XprType& xpr) 
  {
    return xpr;
  }
};

template<typename XprType>
struct AddEvalIfAssumingAliasing<XprType, 1>
{
  static const EvalToTemp<XprType> run(const XprType& xpr)
  {
    return EvalToTemp<XprType>(xpr);
  }
};

template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_STRONG_INLINE
const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
{
  return noalias_copy_using_evaluator(dst.const_cast_derived(), 
                                      AddEvalIfAssumingAliasing<SrcXprType>::run(src.derived()),
                                      func
                                     );
}

// this mimics operator=
template<typename DstXprType, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
{
  return copy_using_evaluator(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
}

template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_STRONG_INLINE
const DstXprType& noalias_copy_using_evaluator(const PlainObjectBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
{
#ifdef EIGEN_DEBUG_ASSIGN
  internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
#endif
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
  eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
                                                        : (dst.rows() == src.rows() && dst.cols() == src.cols())))
              && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#else
  dst.const_cast_derived().resizeLike(src.derived());
#endif
  call_dense_assignment_loop(dst.const_cast_derived(), src.derived(), func);
  return dst.derived();
}

template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_STRONG_INLINE
const DstXprType& noalias_copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
{
  call_dense_assignment_loop(dst.const_cast_derived(), src.derived(), func);
  return dst.derived();
}

// Based on DenseBase::swap()
// TODO: Check whether we need to do something special for swapping two
//       Arrays or Matrices. (Jitse)

// Overload default assignPacket behavior for swapping them
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT>
class swap_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar> >
{
  typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar> > Base;
  typedef typename DstEvaluatorTypeT::PacketScalar PacketScalar;
  using Base::m_dst;
  using Base::m_src;
  using Base::m_functor;
  
public:
  typedef typename Base::Scalar Scalar;
  typedef typename Base::Index Index;
  typedef typename Base::DstXprType DstXprType;
  
  swap_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, DstXprType& dstExpr)
    : Base(dst, src, swap_assign_op<Scalar>(), dstExpr)
  {}
  
  template<int StoreMode, int LoadMode>
  void assignPacket(Index row, Index col)
  {
    m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(row,col), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(row,col));
  }
  
  template<int StoreMode, int LoadMode>
  void assignPacket(Index index)
  {
    m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(index), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(index));
  }
  
  // TODO find a simple way not to have to copy/paste this function from generic_dense_assignment_kernel, by simple I mean no CRTP (Gael)
  template<int StoreMode, int LoadMode>
  void assignPacketByOuterInner(Index outer, Index inner)
  {
    Index row = Base::rowIndexByOuterInner(outer, inner); 
    Index col = Base::colIndexByOuterInner(outer, inner);
    assignPacket<StoreMode,LoadMode>(row, col);
  }
};
  
template<typename DstXprType, typename SrcXprType>
void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
{
  // TODO there is too much redundancy with call_dense_assignment_loop
  
  eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
  
  typedef typename evaluator<DstXprType>::type DstEvaluatorType;
  typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;

  DstEvaluatorType dstEvaluator(dst);
  SrcEvaluatorType srcEvaluator(src);
    
  typedef swap_kernel<DstEvaluatorType,SrcEvaluatorType> Kernel;
  Kernel kernel(dstEvaluator, srcEvaluator, dst.const_cast_derived());
  
  dense_assignment_loop<Kernel>::run(kernel);
}

// Based on MatrixBase::operator+= (in CwiseBinaryOp.h)
template<typename DstXprType, typename SrcXprType>
void add_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
{
  typedef typename DstXprType::Scalar Scalar;
  copy_using_evaluator(dst.derived(), src.derived(), add_assign_op<Scalar>());
}

// Based on ArrayBase::operator+=
template<typename DstXprType, typename SrcXprType>
void add_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
  typedef typename DstXprType::Scalar Scalar;
  copy_using_evaluator(dst.derived(), src.derived(), add_assign_op<Scalar>());
}

// TODO: Add add_assign_using_evaluator for EigenBase ? (Jitse)

template<typename DstXprType, typename SrcXprType>
void subtract_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
{
  typedef typename DstXprType::Scalar Scalar;
  copy_using_evaluator(dst.derived(), src.derived(), sub_assign_op<Scalar>());
}

template<typename DstXprType, typename SrcXprType>
void subtract_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
  typedef typename DstXprType::Scalar Scalar;
  copy_using_evaluator(dst.derived(), src.derived(), sub_assign_op<Scalar>());
}

template<typename DstXprType, typename SrcXprType>
void multiply_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
  typedef typename DstXprType::Scalar Scalar;
  copy_using_evaluator(dst.derived(), src.derived(), mul_assign_op<Scalar>());
}

template<typename DstXprType, typename SrcXprType>
void divide_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
  typedef typename DstXprType::Scalar Scalar;
  copy_using_evaluator(dst.derived(), src.derived(), div_assign_op<Scalar>());
}


} // namespace internal

} // end namespace Eigen

#endif // EIGEN_ASSIGN_EVALUATOR_H