aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/tools/benchmark/benchmark_model.cc
blob: de93b12b97081feea5be96edf3b6e6dfbe5599b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// A C++ binary to benchmark a compute graph and its individual operators,
// both on desktop machines and on Android.
//
// See README.md for usage instructions.

#include "tensorflow/tools/benchmark/benchmark_model.h"

#include <cstdlib>
#include <memory>
#include <string>
#include <unordered_set>
#include <vector>

#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/step_stats.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/algorithm.h"
#include "tensorflow/core/graph/graph.h"
#include "tensorflow/core/graph/graph_constructor.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/platform.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"
#include "tensorflow/core/util/reporter.h"
#include "tensorflow/core/util/stat_summarizer.h"

namespace tensorflow {
namespace benchmark_model {

namespace {

Status InitializeVariables(Session* session,
                           const std::vector<string>& init_ops) {
  LOG(INFO) << "Initializing graph variables";
  for (const string& init_op : init_ops) {
    TF_RETURN_IF_ERROR(session->Run({}, {}, {init_op}, nullptr));
  }
  return Status::OK();
}

template <class T>
void InitializeTensor(const std::vector<float>& initialization_values,
                      Tensor* input_tensor) {
  auto type_tensor = input_tensor->flat<T>();
  type_tensor = type_tensor.constant(0);
  if (!initialization_values.empty()) {
    for (int i = 0; i < initialization_values.size(); ++i) {
      type_tensor(i) = static_cast<T>(initialization_values[i]);
    }
  }
}

void CreateTensorsFromInputInfo(
    const std::vector<InputLayerInfo>& inputs,
    std::vector<std::pair<string, tensorflow::Tensor> >* input_tensors) {
  for (const InputLayerInfo& input : inputs) {
    Tensor input_tensor(input.data_type, input.shape);
    switch (input.data_type) {
      case DT_INT32: {
        InitializeTensor<int32>(input.initialization_values, &input_tensor);
        break;
      }
      case DT_FLOAT: {
        InitializeTensor<float>(input.initialization_values, &input_tensor);
        break;
      }
      case DT_QUINT8: {
        InitializeTensor<quint8>(input.initialization_values, &input_tensor);
        break;
      }
      case DT_UINT8: {
        InitializeTensor<uint8>(input.initialization_values, &input_tensor);
        break;
      }
      case DT_BOOL: {
        InitializeTensor<bool>(input.initialization_values, &input_tensor);
        break;
      }
      case DT_STRING: {
        if (!input.initialization_values.empty()) {
          LOG(FATAL) << "Initialization values are not supported for strings";
        }
        auto type_tensor = input_tensor.flat<string>();
        type_tensor = type_tensor.constant("");
        break;
      }
      default:
        LOG(FATAL) << "Unsupported input type: "
                   << DataTypeString(input.data_type);
    }
    input_tensors->push_back({input.name, input_tensor});
  }
}

Status GetOutputShapes(const std::vector<InputLayerInfo>& inputs,
                       const std::set<string>& wanted_shapes, Session* session,
                       std::unordered_map<string, TensorShape>* node_shapes) {
  std::vector<std::pair<string, tensorflow::Tensor> > input_tensors;
  CreateTensorsFromInputInfo(inputs, &input_tensors);
  std::vector<tensorflow::Tensor> output_tensors;
  std::vector<string> output_tensor_names;
  for (const string& wanted_shape : wanted_shapes) {
    bool is_input = false;
    for (const std::pair<string, tensorflow::Tensor>& input_tensor :
         input_tensors) {
      if (input_tensor.first == wanted_shape) {
        (*node_shapes)[wanted_shape] = input_tensor.second.shape();
        is_input = true;
        break;
      }
    }
    if (!is_input) {
      output_tensor_names.push_back(wanted_shape);
    }
  }
  TF_RETURN_IF_ERROR(
      session->Run(input_tensors, output_tensor_names, {}, &output_tensors));
  CHECK_EQ(output_tensors.size(), output_tensor_names.size());
  for (int i = 0; i < output_tensor_names.size(); ++i) {
    const string& wanted_shape_name = output_tensor_names[i];
    const TensorShape& found_shape = output_tensors[i].shape();
    (*node_shapes)[wanted_shape_name] = found_shape;
  }
  return Status::OK();
}

Status CalculateFlops(const GraphDef& graph,
                      const std::vector<InputLayerInfo>& inputs,
                      Session* session, int64* total_flops,
                      std::unordered_map<string, int64>* flops_by_op) {
  std::unordered_set<string> floppable_ops = {
      "Conv2D", "MatMul", "QuantizedConv2D", "QuantizedMatMul",
      "DepthwiseConv2dNative"};

  std::set<string> wanted_shapes;
  for (const NodeDef& node : graph.node()) {
    if (floppable_ops.count(node.op())) {
      for (const string& input : node.input()) {
        wanted_shapes.insert(input);
      }
      wanted_shapes.insert(node.name());
    }
  }
  std::unordered_map<string, TensorShape> found_shapes;
  TF_RETURN_IF_ERROR(
      GetOutputShapes(inputs, wanted_shapes, session, &found_shapes));

  *total_flops = 0;
  for (const NodeDef& node : graph.node()) {
    if (floppable_ops.count(node.op())) {
      int64 current_flops = 0;
      // This is a very crude approximation to FLOPs that only looks at a few
      // op types that commonly form the bulk of the computation for many
      // models. It's included here because getting even an approximate value
      // for FLOPs is still very useful for estimating utilization, versus a
      // device's theoretical maximum FLOPs/second.
      if ((node.op() == "Conv2D") || (node.op() == "QuantizedConv2D")) {
        const TensorShape& filter_shape = found_shapes[node.input(1)];
        const TensorShape& output_shape = found_shapes[node.name()];
        int64 filter_height = filter_shape.dim_size(0);
        int64 filter_width = filter_shape.dim_size(1);
        int64 filter_in_depth = filter_shape.dim_size(2);
        int64 output_count = output_shape.num_elements();
        current_flops =
            output_count * filter_in_depth * filter_height * filter_width * 2;
      } else if ((node.op() == "MatMul") || (node.op() == "QuantizedMatMul")) {
        const bool transpose_a = node.attr().at("transpose_a").b();
        const TensorShape& a_shape = found_shapes[node.input(0)];
        const TensorShape& output_shape = found_shapes[node.name()];
        int64 k;
        if (transpose_a) {
          k = a_shape.dim_size(0);
        } else {
          k = a_shape.dim_size(1);
        }
        int64 output_count = output_shape.num_elements();
        current_flops = k * output_count * 2;
      } else if (node.op() == "DepthwiseConv2dNative") {
        const TensorShape& filter_shape = found_shapes[node.input(1)];
        const TensorShape& output_shape = found_shapes[node.name()];
        int64 filter_height = filter_shape.dim_size(0);
        int64 filter_width = filter_shape.dim_size(1);
        int64 output_count = output_shape.num_elements();
        current_flops = output_count * filter_height * filter_width * 2;
      }
      (*flops_by_op)[node.op()] += current_flops;
      *total_flops += current_flops;
    }
  }
  return Status::OK();
}

void RecordBenchmarkEntry(const string& output_prefix,
                          const string& benchmark_name, const string& postfix,
                          int num_runs, double total_time_s,
                          double throughput = -1.0) {
  std::stringstream stream;
  stream << benchmark_name;
  if (!postfix.empty()) {
    stream << "_" << postfix;
  }

  TestReporter node_reporter(output_prefix, stream.str());
  TF_QCHECK_OK(node_reporter.Initialize());
  TF_QCHECK_OK(
      node_reporter.Benchmark(num_runs, -1.0, total_time_s, throughput));
  TF_QCHECK_OK(node_reporter.Close());
}

void SleepSeconds(double sleep_seconds) {
  if (sleep_seconds <= 0.0) {
    return;
  }
#ifdef PLATFORM_WINDOWS
  Sleep(sleep_seconds * 1000);
#else
  // Convert the inference_delay string into a timespec.
  timespec req;
  req.tv_sec = static_cast<time_t>(sleep_seconds);
  req.tv_nsec = (sleep_seconds - req.tv_sec) * 1000000000;
  nanosleep(&req, nullptr);
#endif
}

}  // namespace

Status InitializeSession(int num_threads, const string& graph,
                         std::unique_ptr<Session>* session,
                         std::unique_ptr<GraphDef>* graph_def) {
  LOG(INFO) << "Loading TensorFlow.";

  tensorflow::SessionOptions options;
  tensorflow::ConfigProto& config = options.config;
  if (num_threads > 0) {
    config.set_intra_op_parallelism_threads(num_threads);
  }
  LOG(INFO) << "Got config, " << config.device_count_size() << " devices";

  session->reset(tensorflow::NewSession(options));
  graph_def->reset(new GraphDef());
  tensorflow::GraphDef tensorflow_graph;
  Status s = ReadBinaryProto(Env::Default(), graph, graph_def->get());
  if (!s.ok()) {
    s = ReadTextProto(Env::Default(), graph, graph_def->get());
  }

  if (!s.ok()) {
    LOG(ERROR) << "Could not create TensorFlow Graph: " << s;
    return s;
  }

  s = (*session)->Create(*(graph_def->get()));
  if (!s.ok()) {
    LOG(ERROR) << "Could not create TensorFlow Session: " << s;
    return s;
  }

  return Status::OK();
}

Status RunBenchmark(const std::vector<InputLayerInfo>& inputs,
                    const std::vector<string>& outputs,
                    const std::vector<string>& targets, Session* session,
                    StatSummarizer* stats, int64* inference_time_us) {
  std::vector<std::pair<string, tensorflow::Tensor> > input_tensors;
  CreateTensorsFromInputInfo(inputs, &input_tensors);

  std::vector<tensorflow::Tensor> output_tensors;

  tensorflow::Status s;

  RunOptions run_options;
  if (stats != nullptr) {
    run_options.set_trace_level(RunOptions::FULL_TRACE);
  }

  RunMetadata run_metadata;
  const int64 start_time = Env::Default()->NowMicros();
  s = session->Run(run_options, input_tensors, outputs, targets,
                   &output_tensors, &run_metadata);
  const int64 end_time = Env::Default()->NowMicros();
  *inference_time_us = end_time - start_time;

  if (!s.ok()) {
    LOG(ERROR) << "Error during inference: " << s;
    return s;
  }

  if (stats != nullptr) {
    assert(run_metadata.has_step_stats());
    const StepStats& step_stats = run_metadata.step_stats();
    stats->ProcessStepStats(step_stats);
  }

  return s;
}

Status TimeMultipleRuns(double sleep_seconds, int num_runs, double max_time_s,
                        const std::vector<InputLayerInfo>& inputs,
                        const std::vector<string>& outputs,
                        const std::vector<string>& targets, Session* session,
                        StatSummarizer* stats, int64* total_time_us,
                        int64* actual_num_runs) {
  *total_time_us = 0;

  LOG(INFO) << "Running benchmark for max " << num_runs << " iterations, max "
            << max_time_s << " seconds "
            << (stats != nullptr ? "with" : "without")
            << " detailed stat logging, with " << sleep_seconds
            << "s sleep between inferences";

  Stat<int64> stat;
  const bool until_max_time = num_runs <= 0;
  for (int i = 0; until_max_time || i < num_runs; ++i) {
    int64 time;
    Status run_status =
        RunBenchmark(inputs, outputs, targets, session, stats, &time);
    stat.UpdateStat(time);
    (*total_time_us) += time;
    ++(*actual_num_runs);

    if (max_time_s > 0.0 && (*total_time_us / 1000000.0) > max_time_s) {
      break;
    }

    if (!run_status.ok()) {
      LOG(INFO) << "Failed on run " << i;
      return run_status;
    }

    // If requested, sleep between runs for an arbitrary amount of time.
    // This can be helpful to determine the effect of mobile processor
    // scaling and thermal throttling.
    if (sleep_seconds > 0.0) {
      SleepSeconds(sleep_seconds);
    }
  }
  std::stringstream stream;
  stat.OutputToStream(&stream);
  LOG(INFO) << stream.str() << std::endl;

  return Status::OK();
}

int Main(int argc, char** argv) {
  string graph = "/data/local/tmp/tensorflow_inception_graph.pb";
  string init_ops_string = "";
  string input_layer_string = "input:0";
  string input_layer_shape_string = "1,224,224,3";
  string input_layer_type_string = "float";
  string input_layer_values_string = "";
  string output_layer_string = "output:0";
  string target_layer_string = "";
  int max_num_runs = 1000;
  string max_time = "10.0";
  string inference_delay = "-1.0";
  string inter_benchmark_delay = "-1.0";
  int num_threads = -1;
  string benchmark_name = "";
  string output_prefix = "";
  bool show_sizes = false;
  bool show_run_order = true;
  int run_order_limit = 0;
  bool show_time = true;
  int time_limit = 10;
  bool show_memory = true;
  int memory_limit = 10;
  bool show_type = true;
  bool show_summary = true;
  bool show_flops = false;
  int warmup_runs = 1;

  std::vector<Flag> flag_list = {
      Flag("graph", &graph, "graph file name"),
      Flag("init_ops", &init_ops_string, "init ops"),
      Flag("input_layer", &input_layer_string, "input layer names"),
      Flag("input_layer_shape", &input_layer_shape_string, "input layer shape"),
      Flag("input_layer_type", &input_layer_type_string, "input layer type"),
      Flag("input_layer_values", &input_layer_values_string,
           "values to initialize the inputs with"),
      Flag("output_layer", &output_layer_string, "output layer name"),
      Flag("target_layer", &target_layer_string, "target layer name"),
      Flag("max_num_runs", &max_num_runs, "number of runs max"),
      Flag("max_time", &max_time, "length to run max"),
      Flag("inference_delay", &inference_delay,
           "delay between runs in seconds"),
      Flag("inter_benchmark_delay", &inter_benchmark_delay,
           "delay between benchmarks in seconds"),
      Flag("num_threads", &num_threads, "number of threads"),
      Flag("benchmark_name", &benchmark_name, "benchmark name"),
      Flag("output_prefix", &output_prefix, "benchmark output prefix"),
      Flag("show_sizes", &show_sizes, "whether to show sizes"),
      Flag("show_run_order", &show_run_order,
           "whether to list stats by run order"),
      Flag("run_order_limit", &run_order_limit,
           "how many items to show by run order"),
      Flag("show_time", &show_time, "whether to list stats by time taken"),
      Flag("time_limit", &time_limit, "how many items to show by time taken"),
      Flag("show_memory", &show_memory, "whether to list stats by memory used"),
      Flag("memory_limit", &memory_limit,
           "how many items to show by memory used"),
      Flag("show_type", &show_type, "whether to list stats by op type"),
      Flag("show_summary", &show_summary,
           "whether to show a summary of the stats"),
      Flag("show_flops", &show_flops, "whether to estimate the model's FLOPs"),
      Flag("warmup_runs", &warmup_runs, "how many runs to initialize model"),
  };
  string usage = Flags::Usage(argv[0], flag_list);
  const bool parse_result = Flags::Parse(&argc, argv, flag_list);

  if (!parse_result) {
    LOG(ERROR) << usage;
    return -1;
  }

  std::vector<string> init_ops = str_util::Split(init_ops_string, ',');
  std::vector<string> input_layers = str_util::Split(input_layer_string, ',');
  std::vector<string> input_layer_shapes =
      str_util::Split(input_layer_shape_string, ':');
  std::vector<string> input_layer_types =
      str_util::Split(input_layer_type_string, ',');
  std::vector<string> input_layer_values =
      str_util::Split(input_layer_values_string, ':');
  std::vector<string> output_layers = str_util::Split(output_layer_string, ',');
  std::vector<string> target_layers = str_util::Split(target_layer_string, ',');
  if ((input_layers.size() != input_layer_shapes.size()) ||
      (input_layers.size() != input_layer_types.size())) {
    LOG(ERROR) << "There must be the same number of items in --input_layer,"
               << " --input_layer_shape, and --input_layer_type, for example"
               << " --input_layer=input1,input2 --input_layer_type=float,float "
               << " --input_layer_shape=1,224,224,4:1,20";
    LOG(ERROR) << "--input_layer=" << input_layer_string << " ("
               << input_layers.size() << " items)";
    LOG(ERROR) << "--input_layer_type=" << input_layer_type_string << " ("
               << input_layer_types.size() << " items)";
    LOG(ERROR) << "--input_layer_shape=" << input_layer_shape_string << " ("
               << input_layer_shapes.size() << " items)";
    return -1;
  }
  const size_t inputs_count = input_layers.size();

  ::tensorflow::port::InitMain(argv[0], &argc, &argv);
  if (argc > 1) {
    LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage;
    return -1;
  }

  LOG(INFO) << "Graph: [" << graph << "]";
  LOG(INFO) << "Init ops:" << init_ops_string;
  LOG(INFO) << "Input layers: [" << input_layer_string << "]";
  LOG(INFO) << "Input shapes: [" << input_layer_shape_string << "]";
  LOG(INFO) << "Input types: [" << input_layer_type_string << "]";
  LOG(INFO) << "Output layers: [" << output_layer_string << "]";
  LOG(INFO) << "Target layers: [" << target_layer_string << "]";
  LOG(INFO) << "Num runs: [" << max_num_runs << "]";
  LOG(INFO) << "Inter-inference delay (seconds): [" << inference_delay << "]";
  LOG(INFO) << "Inter-benchmark delay (seconds): [" << inter_benchmark_delay
            << "]";
  LOG(INFO) << "Num threads: [" << num_threads << "]";
  LOG(INFO) << "Benchmark name: [" << benchmark_name << "]";
  LOG(INFO) << "Output prefix: [" << output_prefix << "]";
  LOG(INFO) << "Show sizes: [" << show_sizes << "]";
  LOG(INFO) << "Warmup runs: [" << warmup_runs << "]";

  std::unique_ptr<Session> session;
  std::unique_ptr<StatSummarizer> stats;
  std::unique_ptr<GraphDef> graph_def;

  int64 initialization_start_us = Env::Default()->NowMicros();
  Status initialize_status =
      InitializeSession(num_threads, graph, &session, &graph_def);
  int64 initialization_end_us = Env::Default()->NowMicros();
  double initialization_time_s =
      (initialization_end_us - initialization_start_us) / 1000000.0;
  LOG(INFO) << "Initialized session in " << initialization_time_s << "s";
  if (!initialize_status.ok()) {
    return -1;
  }

  if (!init_ops.empty()) {
    Status initialize_variables_status =
        InitializeVariables(session.get(), init_ops);
    if (!initialize_variables_status.ok()) {
      LOG(ERROR) << "Graph variables initialization failed with "
                 << initialize_variables_status;
      return -1;
    }
  }

  StatSummarizerOptions stats_options;
  stats_options.show_run_order = show_run_order;
  stats_options.run_order_limit = run_order_limit;
  stats_options.show_time = show_time;
  stats_options.time_limit = time_limit;
  stats_options.show_memory = show_memory;
  stats_options.memory_limit = memory_limit;
  stats_options.show_type = show_type;
  stats_options.show_summary = show_summary;
  stats.reset(new tensorflow::StatSummarizer(stats_options));

  const double inter_inference_sleep_seconds =
      std::strtod(inference_delay.c_str(), nullptr);
  const double inter_benchmark_sleep_seconds =
      std::strtod(inter_benchmark_delay.c_str(), nullptr);
  const double max_benchmark_time_seconds =
      std::strtod(max_time.c_str(), nullptr);

  std::vector<InputLayerInfo> inputs;
  for (int n = 0; n < inputs_count; ++n) {
    InputLayerInfo input;
    CHECK(DataTypeFromString(input_layer_types[n], &input.data_type))
        << input_layer_types[n] << " was an invalid type";
    std::vector<int32> sizes;
    CHECK(str_util::SplitAndParseAsInts(input_layer_shapes[n], ',', &sizes))
        << "Incorrect size string specified: " << input_layer_shapes[n];
    for (int i = 0; i < sizes.size(); ++i) {
      int32 size = sizes[i];
      if (size == -1) {
        LOG(ERROR) << "Any unknown sizes in the shapes (-1's) must be replaced"
                   << " with the size you want to benchmark with.";
        return -1;
      }
      input.shape.AddDim(sizes[i]);
    }
    input.name = input_layers[n];
    if (n < input_layer_values.size()) {
      CHECK(str_util::SplitAndParseAsFloats(input_layer_values[n], ',',
                                            &input.initialization_values))
          << "Incorrect initialization values string specified: "
          << input_layer_values[n];
    }
    inputs.push_back(input);
  }

  // If requested, run through the graph first to preinitialize everything
  // before the benchmarking runs.
  int64 warmup_time_us = 0;
  int64 num_warmup_runs = 0;
  if (warmup_runs > 0) {
    Status warmup_time_status =
        TimeMultipleRuns(inter_inference_sleep_seconds, warmup_runs, -1.0,
                         inputs, output_layers, target_layers, session.get(),
                         nullptr, &warmup_time_us, &num_warmup_runs);
    if (!warmup_time_status.ok()) {
      LOG(ERROR) << "Timing failed with " << warmup_time_status;
      return -1;
    }
  }

  // Capture overall inference time without stat logging overhead. This is the
  // timing data that can be compared to other libraries.
  SleepSeconds(inter_benchmark_sleep_seconds);
  int64 no_stat_time_us = 0;
  int64 no_stat_num_runs = 0;
  Status no_stat_time_status = TimeMultipleRuns(
      inter_inference_sleep_seconds, max_num_runs, max_benchmark_time_seconds,
      inputs, output_layers, target_layers, session.get(), nullptr,
      &no_stat_time_us, &no_stat_num_runs);
  const double no_stat_wall_time = no_stat_time_us / 1000000.0;
  if (!no_stat_time_status.ok()) {
    LOG(ERROR) << "Timing failed with " << no_stat_time_status;
    return -1;
  }

  // Run again to gather detailed log stats to get a better idea of where
  // relative time is going within the graph.
  SleepSeconds(inter_benchmark_sleep_seconds);
  int64 stat_time_us = 0;
  int64 stat_num_runs = 0;
  Status stat_time_status = TimeMultipleRuns(
      inter_inference_sleep_seconds, max_num_runs, max_benchmark_time_seconds,
      inputs, output_layers, target_layers, session.get(), stats.get(),
      &stat_time_us, &stat_num_runs);
  if (!stat_time_status.ok()) {
    LOG(ERROR) << "Timing failed with " << stat_time_status;
    return -1;
  }

  LOG(INFO) << "Average inference timings in us: "
            << "Warmup: "
            << (warmup_runs > 0 ? warmup_time_us / warmup_runs : 0) << ", "
            << "no stats: " << no_stat_time_us / no_stat_num_runs << ", "
            << "with stats: " << stat_time_us / stat_num_runs;

  stats->PrintStepStats();

  if (show_sizes) {
    stats->PrintOutputs();
  }

  if (show_flops) {
    int64 total_flops;
    std::unordered_map<string, int64> flops_by_op;
    Status flop_status = CalculateFlops(*graph_def, inputs, session.get(),
                                        &total_flops, &flops_by_op);
    if (!flop_status.ok()) {
      LOG(ERROR) << "FLOPs calculation failed with " << flop_status;
      return -1;
    }
    string pretty_flops;
    if (total_flops < 1000) {
      pretty_flops = strings::StrCat(total_flops, " FLOPs");
    } else if (total_flops < (1000 * 1000)) {
      const float rounded_flops = (total_flops / 1000.0f);
      pretty_flops = strings::StrCat(rounded_flops, "k FLOPs");
    } else if (total_flops < (1000 * 1000 * 1000)) {
      const float rounded_flops = round(total_flops / 1000.0f) / 1000.0f;
      pretty_flops = strings::StrCat(rounded_flops, " million FLOPs");
    } else {
      const float rounded_flops =
          round(total_flops / (1000.0f * 1000.0f)) / 1000.0f;
      pretty_flops = strings::StrCat(rounded_flops, " billion FLOPs");
    }
    LOG(INFO) << "FLOPs estimate: " << strings::HumanReadableNum(total_flops);
    const double mean_run_time = no_stat_wall_time / no_stat_num_runs;
    LOG(INFO) << "FLOPs/second: "
              << strings::HumanReadableNum(
                     static_cast<int64>(total_flops / mean_run_time));
  }

  if (!benchmark_name.empty() && !output_prefix.empty()) {
    // Compute the total number of values per input.
    int64 total_size = inputs[0].shape.num_elements();

    // Throughput in MB/s
    const double throughput =
        DataTypeSize(inputs[0].data_type) * total_size * no_stat_num_runs /
        static_cast<double>(no_stat_wall_time) / (1024 * 1024);

    // Report the stats.
    RecordBenchmarkEntry(output_prefix, benchmark_name, "", no_stat_num_runs,
                         no_stat_wall_time, throughput);

    // Session initialization time.
    RecordBenchmarkEntry(output_prefix, benchmark_name, "meta-init", 1,
                         initialization_time_s);

    // First inference time. Note: if warmup_runs is > 1 this will actually be
    // an average of all the warmup runs.
    RecordBenchmarkEntry(output_prefix, benchmark_name, "meta-first-inference",
                         warmup_runs, warmup_time_us / 1000000.0);

    // Time from starting to initialize TF to getting the first result back.
    // This also assumes that only one warmup run is performed.
    RecordBenchmarkEntry(
        output_prefix, benchmark_name, "meta-init-plus-first-inference", 1,
        initialization_time_s + (warmup_time_us / 1000000.0) / warmup_runs);

    std::map<std::string, int64_t> node_type_map_count;
    std::map<std::string, int64_t> node_type_map_time;
    std::map<std::string, int64_t> node_type_map_memory;
    std::map<std::string, int64_t> node_type_map_times_called;

    int64_t accumulated_us;
    stats->ComputeStatsByType(&node_type_map_count, &node_type_map_time,
                              &node_type_map_memory,
                              &node_type_map_times_called, &accumulated_us);
    for (const auto& time : node_type_map_time) {
      LOG(INFO) << "Outputting: [" << time.first << "]";
      RecordBenchmarkEntry(output_prefix, benchmark_name, time.first,
                           stat_num_runs,
                           (time.second * stat_num_runs) / 1000000.0f);
    }
  }

  return 0;
}

}  // namespace benchmark_model
}  // namespace tensorflow