aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/util/util.cc
blob: c79d8a84458800937e3e51a8dae26605bd834233 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/python/util/util.h"

#include <functional>
#include <unordered_map>
#include <vector>

#include "tensorflow/core/lib/gtl/map_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/python/lib/core/safe_ptr.h"

namespace tensorflow {
namespace swig {

namespace {

// Type object for collections.Sequence. This is set by RegisterSequenceClass.
PyObject* CollectionsSequenceType = nullptr;
PyTypeObject* SparseTensorValueType = nullptr;

const int kMaxItemsInCache = 1024;

bool WarnedThatSetIsNotSequence = false;

bool IsString(PyObject* o) {
  return PyBytes_Check(o) ||
#if PY_MAJOR_VERSION < 3
         PyString_Check(o) ||
#endif
         PyUnicode_Check(o);
}

// Equivalent to Python's 'o.__class__.__name__'
// Note that '__class__' attribute is set only in new-style classes.
// A lot of tensorflow code uses __class__ without checks, so it seems like
// we only support new-style classes.
StringPiece GetClassName(PyObject* o) {
  // __class__ is equivalent to type() for new style classes.
  // type() is equivalent to PyObject_Type()
  // (https://docs.python.org/3.5/c-api/object.html#c.PyObject_Type)
  // PyObject_Type() is equivalent to o->ob_type except for Py_INCREF, which
  // we don't need here.
  PyTypeObject* type = o->ob_type;

  // __name__ is the value of `tp_name` after the last '.'
  // (https://docs.python.org/2/c-api/typeobj.html#c.PyTypeObject.tp_name)
  StringPiece name(type->tp_name);
  size_t pos = name.rfind('.');
  if (pos != StringPiece::npos) {
    name.remove_prefix(pos + 1);
  }
  return name;
}

string PyObjectToString(PyObject* o) {
  if (o == nullptr) {
    return "<null object>";
  }
  PyObject* str = PyObject_Str(o);
  if (str) {
#if PY_MAJOR_VERSION < 3
    string s(PyString_AS_STRING(str));
#else
    string s(PyUnicode_AsUTF8(str));
#endif
    Py_DECREF(str);
    return tensorflow::strings::StrCat("type=", GetClassName(o), " str=", s);
  } else {
    return "<failed to execute str() on object>";
  }
}

// Implements the same idea as tensorflow.util.nest._yield_value
// During construction we check if the iterable is a dictionary.
// If so, we construct a sequence from its sorted keys that will be used
// for iteration.
// If not, we construct a sequence directly from the iterable.
// At each step, we get the next element from the sequence and use it
// either as a key or return it directly.
//
// 'iterable' must not be modified while ValIterator is used.
class ValIterator {
 public:
  explicit ValIterator(PyObject* iterable) : dict_(nullptr), index_(0) {
    if (PyDict_Check(iterable)) {
      dict_ = iterable;
      // PyDict_Keys returns a list, which can be used with
      // PySequence_Fast_GET_ITEM.
      seq_ = PyDict_Keys(iterable);
      // Iterate through dictionaries in a deterministic order by sorting the
      // keys. Notice this means that we ignore the original order of
      // `OrderedDict` instances. This is intentional, to avoid potential
      // bugs caused by mixing ordered and plain dicts (e.g., flattening
      // a dict but using a corresponding `OrderedDict` to pack it back).
      PyList_Sort(seq_);
    } else {
      seq_ = PySequence_Fast(iterable, "");
    }
    size_ = PySequence_Fast_GET_SIZE(seq_);
  }

  ~ValIterator() { Py_DECREF(seq_); }

  // Return a borrowed reference to the next element from iterable.
  // Return nullptr when iteration is over.
  PyObject* next() {
    PyObject* element = nullptr;
    if (index_ < size_) {
      // Both PySequence_Fast_GET_ITEM and PyDict_GetItem return borrowed
      // references.
      element = PySequence_Fast_GET_ITEM(seq_, index_);
      ++index_;
      if (dict_ != nullptr) {
        element = PyDict_GetItem(dict_, element);
        if (element == nullptr) {
          PyErr_SetString(PyExc_RuntimeError,
                          "Dictionary was modified during iteration over it");
          return nullptr;
        }
      }
    }
    return element;
  }

 private:
  PyObject* seq_;
  PyObject* dict_;
  Py_ssize_t size_;
  Py_ssize_t index_;
};

mutex g_type_to_sequence_map(LINKER_INITIALIZED);
std::unordered_map<PyTypeObject*, bool>* IsTypeSequenceMap() {
  static auto* const m = new std::unordered_map<PyTypeObject*, bool>;
  return m;
}

// Returns 1 if `o` is considered a sequence for the purposes of Flatten().
// Returns 0 otherwise.
// Returns -1 if an error occurred.
int IsSequenceHelper(PyObject* o) {
  if (PyDict_Check(o)) return true;
  if (PySet_Check(o) && !WarnedThatSetIsNotSequence) {
    LOG(WARNING) << "Sets are not currently considered sequences, "
                    "but this may change in the future, "
                    "so consider avoiding using them.";
    WarnedThatSetIsNotSequence = true;
  }
  if (TF_PREDICT_FALSE(CollectionsSequenceType == nullptr)) {
    PyErr_SetString(
        PyExc_RuntimeError,
        tensorflow::strings::StrCat(
            "collections.Sequence type has not been set. "
            "Please call RegisterSequenceClass before using this module")
            .c_str());
    return -1;
  }

  // Try not to return to Python - see if the type has already been seen
  // before.

  auto* type_to_sequence_map = IsTypeSequenceMap();
  auto* type = Py_TYPE(o);

  {
    mutex_lock l(g_type_to_sequence_map);
    auto it = type_to_sequence_map->find(type);
    if (it != type_to_sequence_map->end()) {
      return it->second;
    }
  }

  // NOTE: We explicitly release the g_type_to_sequence_map mutex,
  // because PyObject_IsInstance() may release the GIL, allowing another thread
  // concurrent entry to this function.
  int is_instance = PyObject_IsInstance(o, CollectionsSequenceType);

  // Don't cache a failed is_instance check.
  if (is_instance == -1) return -1;

  bool is_sequence = static_cast<int>(is_instance != 0 && !IsString(o));

  // NOTE: This is never decref'd, but we don't want the type to get deleted
  // as long as it is in the map. This should not be too much of a
  // leak, as there should only be a relatively small number of types in the
  // map, and an even smaller number that are eligible for decref. As a
  // precaution, we limit the size of the map to 1024.
  {
    mutex_lock l(g_type_to_sequence_map);
    if (type_to_sequence_map->size() < kMaxItemsInCache) {
      Py_INCREF(type);
      type_to_sequence_map->insert({type, is_sequence});
    }
  }

  return is_sequence;
}

bool IsSparseTensorValueType(PyObject* o) {
  if (TF_PREDICT_FALSE(SparseTensorValueType == nullptr)) {
    return false;
  }

  return PyObject_TypeCheck(o, SparseTensorValueType) == 1;
}

int IsSequenceForDataHelper(PyObject* o) {
  return IsSequenceHelper(o) == 1 && !PyList_Check(o) &&
         !IsSparseTensorValueType(o);
}

bool GetNextValuesForDict(PyObject* nested,
                          std::vector<Safe_PyObjectPtr>* next_values) {
  std::vector<PyObject*> result;

  PyObject* keys = PyDict_Keys(nested);
  if (PyList_Sort(keys) == -1) return false;
  Py_ssize_t size = PyList_Size(keys);
  for (Py_ssize_t i = 0; i < size; ++i) {
    // We know that key and item will not be deleted because nested owns
    // a reference to them and callers of flatten must not modify nested
    // while the method is running.
    PyObject* key = PyList_GET_ITEM(keys, i);
    PyObject* item = PyDict_GetItem(nested, key);
    Py_INCREF(item);
    next_values->emplace_back(item);
  }
  Py_DECREF(keys);
  return true;
}

bool GetNextValuesForIterable(PyObject* nested,
                              std::vector<Safe_PyObjectPtr>* next_values) {
  PyObject* item;
  PyObject* iterator = PyObject_GetIter(nested);
  if (iterator == nullptr || PyErr_Occurred()) {
    return false;
  }
  while ((item = PyIter_Next(iterator)) != nullptr) {
    next_values->emplace_back(item);
  }
  Py_DECREF(iterator);
  return true;
}

// GetNextValues returns the values that the FlattenHelper function will recurse
// over next.
bool GetNextValues(PyObject* nested,
                   std::vector<Safe_PyObjectPtr>* next_values) {
  if (PyDict_Check(nested)) {
    // if nested is dictionary, sort it by key and recurse on each value
    return GetNextValuesForDict(nested, next_values);
  }
  // iterate and recurse
  return GetNextValuesForIterable(nested, next_values);
}

// Similar to above, just specialized for the functions in the data pacakage.
bool GetNextValuesForData(PyObject* nested,
                          std::vector<Safe_PyObjectPtr>* next_values) {
  if (PyDict_Check(nested)) {
    // if nested is dictionary, sort it by key and recurse on each value
    return GetNextValuesForDict(nested, next_values);
  } else if (IsSparseTensorValueType(nested)) {
    // if nested is a SparseTensorValue, just return itself as a single item
    Py_INCREF(nested);
    next_values->emplace_back(nested);
    return true;
  }
  // iterate and recurse
  return GetNextValuesForIterable(nested, next_values);
}

bool FlattenHelper(
    PyObject* nested, PyObject* list,
    const std::function<int(PyObject*)>& is_sequence_helper,
    const std::function<bool(PyObject*, std::vector<Safe_PyObjectPtr>*)>&
        next_values_getter) {
  // if nested is not a sequence, append itself and exit
  int is_seq = is_sequence_helper(nested);
  if (is_seq == -1) return false;
  if (!is_seq) {
    return PyList_Append(list, nested) != -1;
  }

  std::vector<Safe_PyObjectPtr> next_values;
  // Get the next values to recurse over.
  if (!next_values_getter(nested, &next_values)) return false;

  for (const auto& item : next_values) {
    if (Py_EnterRecursiveCall(" in flatten")) {
      return false;
    }
    const bool success =
        FlattenHelper(item.get(), list, is_sequence_helper, next_values_getter);
    Py_LeaveRecursiveCall();
    if (!success) {
      return false;
    }
  }
  return true;
}

// Sets error using keys of 'dict1' and 'dict2'.
// 'dict1' and 'dict2' are assumed to be Python dictionaries.
void SetDifferentKeysError(PyObject* dict1, PyObject* dict2, string* error_msg,
                           bool* is_type_error) {
  PyObject* k1 = PyDict_Keys(dict1);
  PyObject* k2 = PyDict_Keys(dict2);
  *is_type_error = false;
  *error_msg = tensorflow::strings::StrCat(
      "The two dictionaries don't have the same set of keys. "
      "First structure has keys ",
      PyObjectToString(k1), ", while second structure has keys ",
      PyObjectToString(k2));
  Py_DECREF(k1);
  Py_DECREF(k2);
}

// Returns true iff there were no "internal" errors. In other words,
// errors that has nothing to do with structure checking.
// If an "internal" error occurred, the appropriate Python error will be
// set and the caller can propage it directly to the user.
//
// Both `error_msg` and `is_type_error` must be non-null. `error_msg` must
// be empty.
// Leaves `error_msg` empty if structures matched. Else, fills `error_msg`
// with appropriate error and sets `is_type_error` to true iff
// the error to be raised should be TypeError.
bool AssertSameStructureHelper(PyObject* o1, PyObject* o2, bool check_types,
                               string* error_msg, bool* is_type_error) {
  DCHECK(error_msg);
  DCHECK(is_type_error);
  const bool is_seq1 = IsSequence(o1);
  const bool is_seq2 = IsSequence(o2);
  if (PyErr_Occurred()) return false;
  if (is_seq1 != is_seq2) {
    string seq_str = is_seq1 ? PyObjectToString(o1) : PyObjectToString(o2);
    string non_seq_str = is_seq1 ? PyObjectToString(o2) : PyObjectToString(o1);
    *is_type_error = false;
    *error_msg = tensorflow::strings::StrCat(
        "Substructure \"", seq_str, "\" is a sequence, while substructure \"",
        non_seq_str, "\" is not");
    return true;
  }

  // Got to scalars, so finished checking. Structures are the same.
  if (!is_seq1) return true;

  if (check_types) {
    const PyTypeObject* type1 = o1->ob_type;
    const PyTypeObject* type2 = o2->ob_type;

    // We treat two different namedtuples with identical name and fields
    // as having the same type.
    const PyObject* o1_tuple = IsNamedtuple(o1, true);
    if (o1_tuple == nullptr) return false;
    const PyObject* o2_tuple = IsNamedtuple(o2, true);
    if (o2_tuple == nullptr) {
      Py_DECREF(o1_tuple);
      return false;
    }
    bool both_tuples = o1_tuple == Py_True && o2_tuple == Py_True;
    Py_DECREF(o1_tuple);
    Py_DECREF(o2_tuple);

    if (both_tuples) {
      const PyObject* same_tuples = SameNamedtuples(o1, o2);
      if (same_tuples == nullptr) return false;
      bool not_same_tuples = same_tuples != Py_True;
      Py_DECREF(same_tuples);
      if (not_same_tuples) {
        *is_type_error = true;
        *error_msg = tensorflow::strings::StrCat(
            "The two namedtuples don't have the same sequence type. "
            "First structure ",
            PyObjectToString(o1), " has type ", type1->tp_name,
            ", while second structure ", PyObjectToString(o2), " has type ",
            type2->tp_name);
        return true;
      }
    } else if (type1 != type2) {
      *is_type_error = true;
      *error_msg = tensorflow::strings::StrCat(
          "The two namedtuples don't have the same sequence type. "
          "First structure ",
          PyObjectToString(o1), " has type ", type1->tp_name,
          ", while second structure ", PyObjectToString(o2), " has type ",
          type2->tp_name);
      return true;
    }

    if (PyDict_Check(o1)) {
      if (PyDict_Size(o1) != PyDict_Size(o2)) {
        SetDifferentKeysError(o1, o2, error_msg, is_type_error);
        return true;
      }

      PyObject* key;
      Py_ssize_t pos = 0;
      while (PyDict_Next(o1, &pos, &key, nullptr)) {
        if (PyDict_GetItem(o2, key) == nullptr) {
          SetDifferentKeysError(o1, o2, error_msg, is_type_error);
          return true;
        }
      }
    }
  }

  ValIterator iter1(o1);
  ValIterator iter2(o2);

  while (true) {
    PyObject* v1 = iter1.next();
    PyObject* v2 = iter2.next();
    if (v1 != nullptr && v2 != nullptr) {
      if (Py_EnterRecursiveCall(" in assert_same_structure")) {
        return false;
      }
      bool no_internal_errors = AssertSameStructureHelper(
          v1, v2, check_types, error_msg, is_type_error);
      Py_LeaveRecursiveCall();
      if (!no_internal_errors) return false;
      if (!error_msg->empty()) return true;
    } else if (v1 == nullptr && v2 == nullptr) {
      // Done with all recursive calls. Structure matched.
      return true;
    } else {
      *is_type_error = false;
      *error_msg = tensorflow::strings::StrCat(
          "The two structures don't have the same number of elements. ",
          "First structure: ", PyObjectToString(o1),
          ". Second structure: ", PyObjectToString(o2));
      return true;
    }
  }
}

}  // namespace

void RegisterSequenceClass(PyObject* sequence_class) {
  if (!PyType_Check(sequence_class)) {
    PyErr_SetString(
        PyExc_TypeError,
        tensorflow::strings::StrCat(
            "Expecting a class definition for `collections.Sequence`. Got ",
            Py_TYPE(sequence_class)->tp_name)
            .c_str());
    return;
  }
  CollectionsSequenceType = sequence_class;
}

void RegisterSparseTensorValueClass(PyObject* sparse_tensor_value_class) {
  if (!PyType_Check(sparse_tensor_value_class)) {
    PyErr_SetString(
        PyExc_TypeError,
        tensorflow::strings::StrCat(
            "Expecting a class definition for `SparseTensorValue`. Got ",
            Py_TYPE(sparse_tensor_value_class)->tp_name)
            .c_str());
    return;
  }
  SparseTensorValueType =
      reinterpret_cast<PyTypeObject*>(sparse_tensor_value_class);
}

bool IsSequence(PyObject* o) { return IsSequenceHelper(o) == 1; }

PyObject* Flatten(PyObject* nested) {
  PyObject* list = PyList_New(0);
  if (FlattenHelper(nested, list, IsSequenceHelper, GetNextValues)) {
    return list;
  } else {
    Py_DECREF(list);
    return nullptr;
  }
}

bool IsSequenceForData(PyObject* o) { return IsSequenceForDataHelper(o) == 1; }

PyObject* FlattenForData(PyObject* nested) {
  PyObject* list = PyList_New(0);
  if (FlattenHelper(nested, list, IsSequenceForDataHelper,
                    GetNextValuesForData)) {
    return list;
  } else {
    Py_DECREF(list);
    return nullptr;
  }
}

PyObject* IsNamedtuple(PyObject* o, bool strict) {
  // Must be subclass of tuple
  if (!PyTuple_Check(o)) {
    Py_RETURN_FALSE;
  }

  // If strict, o.__class__.__base__ must be tuple
  if (strict) {
    PyObject* klass = PyObject_GetAttrString(o, "__class__");
    if (klass == nullptr) return nullptr;
    PyObject* base = PyObject_GetAttrString(klass, "__base__");
    Py_DECREF(klass);
    if (base == nullptr) return nullptr;

    const PyTypeObject* base_type = reinterpret_cast<PyTypeObject*>(base);
    // built-in object types are singletons
    bool tuple_base = base_type == &PyTuple_Type;
    Py_DECREF(base);
    if (!tuple_base) {
      Py_RETURN_FALSE;
    }
  }

  if (TF_PREDICT_FALSE(CollectionsSequenceType == nullptr)) {
    PyErr_SetString(
        PyExc_RuntimeError,
        tensorflow::strings::StrCat(
            "collections.Sequence type has not been set. "
            "Please call RegisterSequenceClass before using this module")
            .c_str());
    return nullptr;
  }

  // o must have attribute '_fields' and every element in
  // '_fields' must be a string.
  int has_fields = PyObject_HasAttrString(o, "_fields");
  if (!has_fields) {
    Py_RETURN_FALSE;
  }

  Safe_PyObjectPtr fields = make_safe(PyObject_GetAttrString(o, "_fields"));
  int is_instance = PyObject_IsInstance(fields.get(), CollectionsSequenceType);
  if (is_instance == 0) {
    Py_RETURN_FALSE;
  } else if (is_instance == -1) {
    return nullptr;
  }

  Safe_PyObjectPtr seq = make_safe(PySequence_Fast(fields.get(), ""));
  const Py_ssize_t s = PySequence_Fast_GET_SIZE(seq.get());
  for (Py_ssize_t i = 0; i < s; ++i) {
    // PySequence_Fast_GET_ITEM returns borrowed ref
    PyObject* elem = PySequence_Fast_GET_ITEM(seq.get(), i);
    if (!IsString(elem)) {
      Py_RETURN_FALSE;
    }
  }

  Py_RETURN_TRUE;
}

PyObject* SameNamedtuples(PyObject* o1, PyObject* o2) {
  PyObject* f1 = PyObject_GetAttrString(o1, "_fields");
  PyObject* f2 = PyObject_GetAttrString(o2, "_fields");
  if (f1 == nullptr || f2 == nullptr) {
    Py_XDECREF(f1);
    Py_XDECREF(f2);
    PyErr_SetString(
        PyExc_RuntimeError,
        "Expected namedtuple-like objects (that have _fields attr)");
    return nullptr;
  }

  if (PyObject_RichCompareBool(f1, f2, Py_NE)) {
    Py_RETURN_FALSE;
  }

  if (GetClassName(o1).compare(GetClassName(o2)) == 0) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
}

PyObject* AssertSameStructure(PyObject* o1, PyObject* o2, bool check_types) {
  string error_msg;
  bool is_type_error = false;
  AssertSameStructureHelper(o1, o2, check_types, &error_msg, &is_type_error);
  if (!error_msg.empty()) {
    PyErr_SetString(
        is_type_error ? PyExc_TypeError : PyExc_ValueError,
        tensorflow::strings::StrCat(
            "The two structures don't have the same nested structure.\n\n",
            "First structure: ", PyObjectToString(o1), "\n\nSecond structure: ",
            PyObjectToString(o2), "\n\nMore specifically: ", error_msg)
            .c_str());
    return nullptr;
  }
  Py_RETURN_NONE;
}

}  // namespace swig
}  // namespace tensorflow