aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/training/learning_rate_decay.py
blob: fd195a7965ab7512728e4e9e9e0c51a00b6ad79d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various learning rate decay functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.util.tf_export import tf_export


@tf_export("train.exponential_decay")
def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False,
                      name=None):
  """Applies exponential decay to the learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires a `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate *
                          decay_rate ^ (global_step / decay_steps)
  ```

  If the argument `staircase` is `True`, then `global_step / decay_steps` is an
  integer division and the decayed learning rate follows a staircase function.

  Example: decay every 100000 steps with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
                                             100000, 0.96, staircase=True)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Must be positive.  See the decay computation above.
    decay_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The decay rate.
    staircase: Boolean.  If `True` decay the learning rate at discrete intervals
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("global_step is required for exponential_decay.")
  with ops.name_scope(
      name, "ExponentialDecay",
      [learning_rate, global_step, decay_steps, decay_rate]) as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    decay_steps = math_ops.cast(decay_steps, dtype)
    decay_rate = math_ops.cast(decay_rate, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      p = global_step_recomp / decay_steps
      if staircase:
        p = math_ops.floor(p)
      return math_ops.multiply(
          learning_rate, math_ops.pow(decay_rate, p), name=name)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.piecewise_constant")
def piecewise_constant(x, boundaries, values, name=None):
  """Piecewise constant from boundaries and interval values.

  Example: use a learning rate that's 1.0 for the first 100001 steps, 0.5
    for the next 10000 steps, and 0.1 for any additional steps.

  ```python
  global_step = tf.Variable(0, trainable=False)
  boundaries = [100000, 110000]
  values = [1.0, 0.5, 0.1]
  learning_rate = tf.train.piecewise_constant(global_step, boundaries, values)

  # Later, whenever we perform an optimization step, we increment global_step.
  ```

  Args:
    x: A 0-D scalar `Tensor`. Must be one of the following types: `float32`,
      `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`.
    boundaries: A list of `Tensor`s or `int`s or `float`s with strictly
      increasing entries, and with all elements having the same type as `x`.
    values: A list of `Tensor`s or `float`s or `int`s that specifies the values
      for the intervals defined by `boundaries`. It should have one more element
      than `boundaries`, and all elements should have the same type.
    name: A string. Optional name of the operation. Defaults to
      'PiecewiseConstant'.

  Returns:
    A 0-D Tensor. Its value is `values[0]` when `x <= boundaries[0]`,
    `values[1]` when `x > boundaries[0]` and `x <= boundaries[1]`, ...,
    and values[-1] when `x > boundaries[-1]`.

  Raises:
    ValueError: if types of `x` and `boundaries` do not match, or types of all
        `values` do not match or
        the number of elements in the lists does not match.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if len(boundaries) != len(values) - 1:
    raise ValueError(
        "The length of boundaries should be 1 less than the length of values")
  with ops.name_scope(name, "PiecewiseConstant",
                      [x, boundaries, values, name]) as name:
    boundaries = ops.convert_n_to_tensor(boundaries)
    values = ops.convert_n_to_tensor(values)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      x_recomp = ops.convert_to_tensor(x)
      # Avoid explicit conversion to x's dtype. This could result in faulty
      # comparisons, for example if floats are converted to integers.
      for i, b in enumerate(boundaries):
        if b.dtype.base_dtype != x_recomp.dtype.base_dtype:
          # We can promote int32 boundaries to int64 without loss of precision.
          # This covers the most common case where the user passes in boundaries
          # as an array of Python integers.
          if (b.dtype.base_dtype == dtypes.int32 and
              x_recomp.dtype.base_dtype == dtypes.int64):
            b = math_ops.cast(b, x_recomp.dtype.base_dtype)
            boundaries[i] = b
          else:
            raise ValueError(
                "Boundaries (%s) must have the same dtype as x (%s)." %
                (b.dtype.base_dtype, x_recomp.dtype.base_dtype))
      # TODO(rdipietro): Ensure that boundaries' elements strictly increases.
      for v in values[1:]:
        if v.dtype.base_dtype != values[0].dtype.base_dtype:
          raise ValueError(
              "Values must have elements all with the same dtype (%s vs %s)." %
              (values[0].dtype.base_dtype, v.dtype.base_dtype))
      pred_fn_pairs = []
      pred_fn_pairs.append((x_recomp <= boundaries[0], lambda: values[0]))
      pred_fn_pairs.append((x_recomp > boundaries[-1], lambda: values[-1]))
      for low, high, v in zip(boundaries[:-1], boundaries[1:], values[1:-1]):
        # Need to bind v here; can do this with lambda v=v: ...
        pred = (x_recomp > low) & (x_recomp <= high)
        pred_fn_pairs.append((pred, lambda v=v: v))

      # The default isn't needed here because our conditions are mutually
      # exclusive and exhaustive, but tf.case requires it.
      default = lambda: values[0]
      return control_flow_ops.case(pred_fn_pairs, default, exclusive=True)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.polynomial_decay")
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False,
                     name=None):
  """Applies a polynomial decay to the learning rate.

  It is commonly observed that a monotonically decreasing learning rate, whose
  degree of change is carefully chosen, results in a better performing model.
  This function applies a polynomial decay function to a provided initial
  `learning_rate` to reach an `end_learning_rate` in the given `decay_steps`.

  It requires a `global_step` value to compute the decayed learning rate.  You
  can just pass a TensorFlow variable that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  global_step = min(global_step, decay_steps)
  decayed_learning_rate = (learning_rate - end_learning_rate) *
                          (1 - global_step / decay_steps) ^ (power) +
                          end_learning_rate

  ```

  If `cycle` is True then a multiple of `decay_steps` is used, the first one
  that is bigger than `global_steps`.

  ```python
  decay_steps = decay_steps * ceil(global_step / decay_steps)
  decayed_learning_rate = (learning_rate - end_learning_rate) *
                          (1 - global_step / decay_steps) ^ (power) +
                          end_learning_rate

  ```

  Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5):

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  end_learning_rate = 0.01
  decay_steps = 10000
  learning_rate = tf.train.polynomial_decay(starter_learning_rate, global_step,
                                            decay_steps, end_learning_rate,
                                            power=0.5)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Must be positive.  See the decay computation above.
    end_learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The minimal end learning rate.
    power: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The power of the polynomial. Defaults to linear, 1.0.
    cycle: A boolean, whether or not it should cycle beyond decay_steps.
    name: String.  Optional name of the operation. Defaults to
      'PolynomialDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("global_step is required for polynomial_decay.")
  with ops.name_scope(
      name, "PolynomialDecay",
      [learning_rate, global_step, decay_steps, end_learning_rate, power
      ]) as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    end_learning_rate = math_ops.cast(end_learning_rate, dtype)
    power = math_ops.cast(power, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      decay_steps_recomp = math_ops.cast(decay_steps, dtype)
      if cycle:
        # Find the first multiple of decay_steps that is bigger than
        # global_step. If global_step is zero set the multiplier to 1
        multiplier = control_flow_ops.cond(
            math_ops.equal(global_step_recomp, 0), lambda: 1.0,
            lambda: math_ops.ceil(global_step_recomp / decay_steps))
        decay_steps_recomp = math_ops.multiply(decay_steps_recomp, multiplier)
      else:
        # Make sure that the global_step used is not bigger than decay_steps.
        global_step_recomp = math_ops.minimum(global_step_recomp, decay_steps)

      p = math_ops.div(global_step_recomp, decay_steps_recomp)
      return math_ops.add(
          math_ops.multiply(learning_rate - end_learning_rate,
                            math_ops.pow(1 - p, power)),
          end_learning_rate,
          name=name)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.natural_exp_decay")
def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False,
                      name=None):
  """Applies natural exponential decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate * exp(-decay_rate * global_step /
  decay_step)
  ```

  or, if `staircase` is `True`, as:

  ```python
  decayed_learning_rate = learning_rate * exp(-decay_rate * floor(global_step /
  decay_step))
  ```

  Example: decay exponentially with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  decay_steps = 5
  k = 0.5
  learning_rate = tf.train.natural_exp_decay(learning_rate, global_step,
                                             decay_steps, k)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: How often to apply decay.
    decay_rate: A Python number.  The decay rate.
    staircase: Whether to apply decay in a discrete staircase, as opposed to
      continuous, fashion.
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialTimeDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("global_step is required for natural_exp_decay.")
  with ops.name_scope(name, "NaturalExpDecay",
                      [learning_rate, global_step, decay_rate]) as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    decay_steps = math_ops.cast(decay_steps, dtype)
    decay_rate = math_ops.cast(decay_rate, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      p = global_step_recomp / decay_steps
      if staircase:
        p = math_ops.floor(p)
      exponent = math_ops.exp(
          math_ops.multiply(math_ops.negative(decay_rate), p))
      return math_ops.multiply(learning_rate, exponent, name=name)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.inverse_time_decay")
def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False,
                       name=None):
  """Applies inverse time decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an inverse decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * global_step /
  decay_step)
  ```

  or, if `staircase` is `True`, as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step /
  decay_step))
  ```

  Example: decay 1/t with a rate of 0.5:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  decay_steps = 1.0
  decay_rate = 0.5
  learning_rate = tf.train.inverse_time_decay(learning_rate, global_step,
  decay_steps, decay_rate)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: How often to apply decay.
    decay_rate: A Python number.  The decay rate.
    staircase: Whether to apply decay in a discrete staircase, as opposed to
      continuous, fashion.
    name: String.  Optional name of the operation.  Defaults to
      'InverseTimeDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("global_step is required for inverse_time_decay.")
  with ops.name_scope(name, "InverseTimeDecay",
                      [learning_rate, global_step, decay_rate]) as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    decay_steps = math_ops.cast(decay_steps, dtype)
    decay_rate = math_ops.cast(decay_rate, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      p = global_step_recomp / decay_steps
      if staircase:
        p = math_ops.floor(p)
      const = math_ops.cast(constant_op.constant(1), dtype)
      denom = math_ops.add(const, math_ops.multiply(decay_rate, p))
      return math_ops.div(learning_rate, denom, name=name)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.cosine_decay")
def cosine_decay(learning_rate, global_step, decay_steps, alpha=0.0, name=None):
  """Applies cosine decay to the learning rate.

  See [Loshchilov & Hutter, ICLR2016], SGDR: Stochastic Gradient Descent
  with Warm Restarts. https://arxiv.org/abs/1608.03983

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies a cosine decay function
  to a provided initial learning rate.  It requires a `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:
  ```python
  global_step = min(global_step, decay_steps)
  cosine_decay = 0.5 * (1 + cos(pi * global_step / decay_steps))
  decayed = (1 - alpha) * cosine_decay + alpha
  decayed_learning_rate = learning_rate * decayed
  ```

  Example usage:
  ```python
  decay_steps = 1000
  lr_decayed = cosine_decay(learning_rate, global_step, decay_steps)
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
      The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Number of steps to decay over.
    alpha: A scalar `float32` or `float64` Tensor or a Python number.
      Minimum learning rate value as a fraction of learning_rate.
    name: String. Optional name of the operation.  Defaults to 'CosineDecay'.
  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("cosine decay requires global_step")
  with ops.name_scope(name, "CosineDecay",
                      [learning_rate, global_step]) as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    decay_steps = math_ops.cast(decay_steps, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      global_step_recomp = math_ops.minimum(global_step_recomp, decay_steps)
      completed_fraction = global_step_recomp / decay_steps
      cosine_decayed = 0.5 * (1.0 + math_ops.cos(
          constant_op.constant(math.pi) * completed_fraction))

      decayed = (1 - alpha) * cosine_decayed + alpha
      return math_ops.multiply(learning_rate, decayed)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.cosine_decay_restarts")
def cosine_decay_restarts(learning_rate,
                          global_step,
                          first_decay_steps,
                          t_mul=2.0,
                          m_mul=1.0,
                          alpha=0.0,
                          name=None):
  """Applies cosine decay with restarts to the learning rate.

  See [Loshchilov & Hutter, ICLR2016], SGDR: Stochastic Gradient Descent
  with Warm Restarts. https://arxiv.org/abs/1608.03983

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies a cosine decay function with
  restarts to a provided initial learning rate.  It requires a `global_step`
  value to compute the decayed learning rate.  You can just pass a TensorFlow
  variable that you increment at each training step.

  The function returns the decayed learning rate while taking into account
  possible warm restarts. The learning rate multiplier first decays
  from 1 to `alpha` for `first_decay_steps` steps. Then, a warm
  restart is performed. Each new warm restart runs for `t_mul` times more steps
  and with `m_mul` times smaller initial learning rate.

  Example usage:
  ```python
  first_decay_steps = 1000
  lr_decayed = cosine_decay_restarts(learning_rate, global_step,
                                     first_decay_steps)
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
      The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.
    first_decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Number of steps to decay over.
    t_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
      Used to derive the number of iterations in the i-th period
    m_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
      Used to derive the initial learning rate of the i-th period:
    alpha: A scalar `float32` or `float64` Tensor or a Python number.
      Minimum learning rate value as a fraction of the learning_rate.
    name: String. Optional name of the operation.  Defaults to 'SGDRDecay'.
  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("cosine decay restarts requires global_step")
  with ops.name_scope(name, "SGDRDecay", [learning_rate, global_step]) as name:
    learning_rate = ops.convert_to_tensor(
        learning_rate, name="initial_learning_rate")
    dtype = learning_rate.dtype
    first_decay_steps = math_ops.cast(first_decay_steps, dtype)
    alpha = math_ops.cast(alpha, dtype)
    t_mul = math_ops.cast(t_mul, dtype)
    m_mul = math_ops.cast(m_mul, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      completed_fraction = global_step_recomp / first_decay_steps

      def compute_step(completed_fraction, geometric=False):
        """Helper for `cond` operation."""
        if geometric:
          i_restart = math_ops.floor(
              math_ops.log(1.0 - completed_fraction * (1.0 - t_mul)) /
              math_ops.log(t_mul))

          sum_r = (1.0 - t_mul**i_restart) / (1.0 - t_mul)
          completed_fraction = (completed_fraction - sum_r) / t_mul**i_restart

        else:
          i_restart = math_ops.floor(completed_fraction)
          completed_fraction -= i_restart

        return i_restart, completed_fraction

      i_restart, completed_fraction = control_flow_ops.cond(
          math_ops.equal(t_mul, 1.0),
          lambda: compute_step(completed_fraction, geometric=False),
          lambda: compute_step(completed_fraction, geometric=True))

      m_fac = m_mul**i_restart
      cosine_decayed = 0.5 * m_fac * (1.0 + math_ops.cos(
          constant_op.constant(math.pi) * completed_fraction))
      decayed = (1 - alpha) * cosine_decayed + alpha

      return math_ops.multiply(learning_rate, decayed, name=name)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.linear_cosine_decay")
def linear_cosine_decay(learning_rate,
                        global_step,
                        decay_steps,
                        num_periods=0.5,
                        alpha=0.0,
                        beta=0.001,
                        name=None):
  """Applies linear cosine decay to the learning rate.

  See [Bello et al., ICML2017] Neural Optimizer Search with RL.
  https://arxiv.org/abs/1709.07417

  For the idea of warm starts here controlled by `num_periods`,
  see [Loshchilov & Hutter, ICLR2016] SGDR: Stochastic Gradient Descent
  with Warm Restarts. https://arxiv.org/abs/1608.03983

  Note that linear cosine decay is more aggressive than cosine decay and
  larger initial learning rates can typically be used.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies a linear cosine decay function
  to a provided initial learning rate.  It requires a `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:
  ```python
  global_step = min(global_step, decay_steps)
  linear_decay = (decay_steps - global_step) / decay_steps)
  cosine_decay = 0.5 * (
      1 + cos(pi * 2 * num_periods * global_step / decay_steps))
  decayed = (alpha + linear_decay) * cosine_decay + beta
  decayed_learning_rate = learning_rate * decayed
  ```

  Example usage:
  ```python
  decay_steps = 1000
  lr_decayed = linear_cosine_decay(learning_rate, global_step, decay_steps)
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
      The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Number of steps to decay over.
    num_periods: Number of periods in the cosine part of the decay.
      See computation above.
    alpha: See computation above.
    beta: See computation above.
    name: String.  Optional name of the operation.  Defaults to
      'LinearCosineDecay'.
  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("linear cosine decay requires global_step")
  with ops.name_scope(name, "LinearCosineDecay",
                      [learning_rate, global_step]) as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    decay_steps = math_ops.cast(decay_steps, dtype)
    num_periods = math_ops.cast(num_periods, dtype)
    alpha = math_ops.cast(alpha, dtype)
    beta = math_ops.cast(beta, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      global_step_recomp = math_ops.minimum(global_step_recomp, decay_steps)
      linear_decayed = (decay_steps - global_step_recomp) / decay_steps
      completed_fraction = global_step_recomp / decay_steps
      fraction = 2.0 * num_periods * completed_fraction
      cosine_decayed = 0.5 * (
          1.0 + math_ops.cos(constant_op.constant(math.pi) * fraction))

      linear_cosine_decayed = (alpha + linear_decayed) * cosine_decayed + beta
      return math_ops.multiply(learning_rate, linear_cosine_decayed, name=name)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr


@tf_export("train.noisy_linear_cosine_decay")
def noisy_linear_cosine_decay(learning_rate,
                              global_step,
                              decay_steps,
                              initial_variance=1.0,
                              variance_decay=0.55,
                              num_periods=0.5,
                              alpha=0.0,
                              beta=0.001,
                              name=None):
  """Applies noisy linear cosine decay to the learning rate.

  See [Bello et al., ICML2017] Neural Optimizer Search with RL.
  https://arxiv.org/abs/1709.07417

  For the idea of warm starts here controlled by `num_periods`,
  see [Loshchilov & Hutter, ICLR2016] SGDR: Stochastic Gradient Descent
  with Warm Restarts. https://arxiv.org/abs/1608.03983

  Note that linear cosine decay is more aggressive than cosine decay and
  larger initial learning rates can typically be used.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies a noisy linear
  cosine decay function to a provided initial learning rate.
  It requires a `global_step` value to compute the decayed learning rate.
  You can just pass a TensorFlow variable that you increment at each
  training step.

  The function returns the decayed learning rate.  It is computed as:
  ```python
  global_step = min(global_step, decay_steps)
  linear_decay = (decay_steps - global_step) / decay_steps)
  cosine_decay = 0.5 * (
      1 + cos(pi * 2 * num_periods * global_step / decay_steps))
  decayed = (alpha + linear_decay + eps_t) * cosine_decay + beta
  decayed_learning_rate = learning_rate * decayed
  ```
  where eps_t is 0-centered gaussian noise with variance
  initial_variance / (1 + global_step) ** variance_decay

  Example usage:
  ```python
  decay_steps = 1000
  lr_decayed = noisy_linear_cosine_decay(
    learning_rate, global_step, decay_steps)
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` Tensor or a Python number.
      The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Number of steps to decay over.
    initial_variance: initial variance for the noise. See computation above.
    variance_decay: decay for the noise's variance. See computation above.
    num_periods: Number of periods in the cosine part of the decay.
      See computation above.
    alpha: See computation above.
    beta: See computation above.
    name: String.  Optional name of the operation.  Defaults to
      'NoisyLinearCosineDecay'.
  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
  if global_step is None:
    raise ValueError("noisy linear cosine decay requires global_step")
  with ops.name_scope(name, "NoisyLinearCosineDecay",
                      [learning_rate, global_step]) as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    decay_steps = math_ops.cast(decay_steps, dtype)
    initial_variance = math_ops.cast(initial_variance, dtype)
    variance_decay = math_ops.cast(variance_decay, dtype)
    num_periods = math_ops.cast(num_periods, dtype)
    alpha = math_ops.cast(alpha, dtype)
    beta = math_ops.cast(beta, dtype)

    def decayed_lr():
      """Helper to recompute learning rate; most helpful in eager-mode."""
      global_step_recomp = math_ops.cast(global_step, dtype)
      global_step_recomp = math_ops.minimum(global_step_recomp, decay_steps)
      linear_decayed = (decay_steps - global_step_recomp) / decay_steps
      variance = initial_variance / (
          math_ops.pow(1.0 + global_step_recomp, variance_decay))
      std = math_ops.sqrt(variance)
      noisy_linear_decayed = (
          linear_decayed + random_ops.random_normal(
              linear_decayed.shape, stddev=std))

      completed_fraction = global_step_recomp / decay_steps
      fraction = 2.0 * num_periods * completed_fraction
      cosine_decayed = 0.5 * (
          1.0 + math_ops.cos(constant_op.constant(math.pi) * fraction))
      noisy_linear_cosine_decayed = (
          (alpha + noisy_linear_decayed) * cosine_decayed + beta)

      return math_ops.multiply(
          learning_rate, noisy_linear_cosine_decayed, name=name)

    if not context.executing_eagerly():
      decayed_lr = decayed_lr()

    return decayed_lr