aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/training/learning_rate_decay.py
blob: f24f1f4a087ed62a5f4495975cb4edaaac3c815d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Various learning rate decay functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import control_flow_ops


def exponential_decay(learning_rate, global_step, decay_steps, decay_rate,
                      staircase=False, name=None):
  """Applies exponential decay to the learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires a `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate *
                          decay_rate ^ (global_step / decay_steps)
  ```

  If the argument `staircase` is `True`, then `global_step / decay_steps` is an
  integer division and the decayed learning rate follows a staircase function.

  Example: decay every 100000 steps with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
                                             100000, 0.96, staircase=True)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Must be positive.  See the decay computation above.
    decay_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The decay rate.
    staircase: Boolean.  It `True` decay the learning rate at discrete intervals
    name: String.  Optional name of the operation.  Defaults to 
      'ExponentialDecay'

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  """
  with ops.op_scope([learning_rate, global_step, decay_steps, decay_rate],
                    name, "ExponentialDecay") as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    global_step = math_ops.cast(global_step, dtype)
    decay_steps = math_ops.cast(decay_steps, dtype)
    decay_rate = math_ops.cast(decay_rate, dtype)
    p = global_step / decay_steps
    if staircase:
      p = math_ops.floor(p)
    return math_ops.mul(learning_rate, math_ops.pow(decay_rate, p), name=name)


def piecewise_constant(x, boundaries, values, name=None):
  """ Piecewise constant from boundaries and interval values.

  Example: use a learning rate that's 1.0 for the first 100000 steps, 0.5
    for steps 100001 to 110000, and 0.1 for any additional steps.

  ```python
  global_step = tf.Variable(0, trainable=False)
  boundaries = [100000, 110000]
  values = [1.0, 0.5, 0.1]
  learning_rate = tf.train.piecewise_constant(global_step, boundaries, values)

  # Later, whenever we perform an optimization step, we increment global_step.
  ```

  Args:
    x: A 0-D scalar `Tensor`. Must be one of the following types: `float32`,
      `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`.
    boundaries: A list of `Tensor`s or `int`s or `float`s with strictly
      increasing entries, and with all elements having the same type as `x`.
    values: A list of `Tensor`s or float`s or `int`s that specifies the values
      for the intervals defined by `boundaries`. It should have one more element
      than `boundaries`, and all elements should have the same type.
    name: A string. Optional name of the operation. Defaults to
      'PiecewiseConstant'.

  Returns:
    A 0-D Tensor. Its value is `values[0]` when `x <= boundaries[0]`,
    `values[1]` when `x > boundaries[0]` and `x <= boundaries[1]`, ...,
    and values[-1] when `x > boundaries[-1]`.
  """

  with ops.op_scope([x, boundaries, values, name],
                    name, 'PiecewiseConstant') as name:
    x = ops.convert_to_tensor(x)
    # Avoid explicit conversion to x's dtype. This could result in faulty
    # comparisons, for example if floats are converted to integers.
    boundaries = ops.convert_n_to_tensor(boundaries)
    if not all(b.dtype == x.dtype for b in boundaries):
      raise ValueError('boundaries must have the same dtype as x.')
    # TODO(rdipietro): Ensure that boundaries' elements are strictly increasing.
    values = ops.convert_n_to_tensor(values)
    if not all(v.dtype == values[0].dtype for v in values):
      raise ValueError('values must have elements all with the same dtype.')

    pred_fn_pairs = {}
    pred_fn_pairs[x <= boundaries[0]] = lambda: values[0]
    pred_fn_pairs[x > boundaries[-1]] = lambda: values[-1]
    for low, high, v in zip(boundaries[:-1], boundaries[1:], values[1:-1]):
      # Need to bind v here; can do this with lambda v=v: ...
      pred = (x > low) & (x <= high)
      pred_fn_pairs[pred] = lambda v=v: v

    # The default isn't needed here because our conditions are mutually
    # exclusive and exhaustive, but tf.case requires it.
    default = lambda: values[0]
    return control_flow_ops.case(pred_fn_pairs, default, exclusive=True)


def polynomial_decay(learning_rate, global_step, decay_steps,
                     end_learning_rate=0.0001, power=1.0,
                     cycle=False, name=None):
  """Applies a polynomial decay to the learning rate.

  It is commonly observed that a monotonically decreasing learning rate, whose
  degree of change is carefully chosen, results in a better performing model.
  This function applies a polynomial decay function to a provided initial
  `learning_rate` to reach an `end_learning_rate` in the given `decay_steps`.

  It requires a `global_step` value to compute the decayed learning rate.  You
  can just pass a TensorFlow variable that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  global_step = min(global_step, decay_steps)
  decayed_learning_rate = (learning_rate - end_learning_rate) *
                          (1 - global_step / decay_steps) ^ (power) +
                          end_learning_rate

  ```

  If `cycle` is True then a multiple of `decay_steps` is used, the first one
  that is bigger than `global_steps`.

  ```python
  decay_steps = decay_steps * ceil(global_step / decay_steps)
  decayed_learning_rate = (learning_rate - end_learning_rate) *
                          (1 - global_step / decay_steps) ^ (power) +
                          end_learning_rate

  ```

  Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5):

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  end_learning_rate = 0.01
  decay_steps = 10000
  learning_rate = tf.train.polynomial_decay(starter_learning_rate, global_step,
                                            decay_steps, end_learning_rate,
                                            power=0.5)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
      Must be positive.  See the decay computation above.
    end_learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The minimal end learning rate.
    power: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The power of the polynomial. Defaults to sqrt, i.e. 0.5.
    cycle: A boolean, whether or not it should cycle beyond decay_steps.
    name: String.  Optional name of the operation. Defaults to 'PolynomialDecay'

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  """
  with ops.op_scope(
      [learning_rate, global_step, decay_steps, end_learning_rate, power],
      name, "PolynomialDecay") as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    global_step = math_ops.cast(global_step, dtype)
    decay_steps = math_ops.cast(decay_steps, dtype)
    end_learning_rate = math_ops.cast(end_learning_rate, dtype)
    power = math_ops.cast(power, dtype)
    if cycle:
      # Find the first multiple of decay_steps that is bigger than global_step.
      decay_steps = math_ops.mul(decay_steps,
                                 math_ops.ceil(global_step / decay_steps))
    else:
      # Make sure that the global_step used is not bigger than decay_steps.
      global_step = math_ops.minimum(global_step, decay_steps)

    p = math_ops.div(global_step, decay_steps)
    return math_ops.add(math_ops.mul(learning_rate - end_learning_rate,
                                     math_ops.pow(1 - p, power)),
                        end_learning_rate, name=name)


def natural_exp_decay(learning_rate, global_step, decay_steps, decay_rate,
                      staircase=False, name=None):
  """Applies natural exponential decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an exponential decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate * exp(-decay_rate * global_step)
  ```

  Example: decay exponetially with a base of 0.96:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  k = 0.5
  learning_rate = tf.train.exponential_time_decay(learning_rate, global_step, k)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_rate: A Python number.  The decay rate.
    name: String.  Optional name of the operation.  Defaults to
      'ExponentialTimeDecay'

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  """
  with ops.op_scope([learning_rate, global_step, decay_rate],
                    name, "NaturalExpDecay") as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    global_step = math_ops.cast(global_step, dtype)
    decay_steps = math_ops.cast(decay_steps, dtype)
    decay_rate = math_ops.cast(decay_rate, dtype)
    p = global_step / decay_steps
    if staircase:
      p = math_ops.floor(p)
    exponent = math_ops.exp(math_ops.mul(math_ops.neg(decay_rate), p))
    return math_ops.mul(learning_rate, exponent, name=name)


def inverse_time_decay(learning_rate, global_step, decay_steps, decay_rate,
                       staircase=False, name=None):
  """Applies inverse time decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an inverse decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * t)
  ```

  Example: decay 1/t with a rate of 0.5:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  k = 0.5
  learning_rate = tf.train.inverse_time_decay(learning_rate, global_step, k)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a
      Python number.  The initial learning rate.
    global_step: A Python number.
      Global step to use for the decay computation.  Must not be negative.
    decay_rate: A Python number.  The decay rate.
    name: String.  Optional name of the operation.  Defaults to
      'InverseTimeDecay'

  with ops.op_scope([learning_rate, global_step, decay_rate],
                    name, "InverseTimeDecay") as name:
  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.
  """

  with ops.op_scope([learning_rate, global_step, decay_rate],
                    name, "InverseTimeDecay") as name:
    learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate")
    dtype = learning_rate.dtype
    global_step = math_ops.cast(global_step, dtype)
    decay_steps = math_ops.cast(decay_steps, dtype)
    decay_rate = math_ops.cast(decay_rate, dtype)
    p = global_step / decay_steps
    if staircase:
      p = math_ops.floor(p)
    const = math_ops.cast(constant_op.constant(1), learning_rate.dtype)
    denom = math_ops.add(const, math_ops.mul(decay_rate, p))
    return math_ops.div(learning_rate, denom, name=name)