aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/training/input.py
blob: cf1ae55f9536c3fc666f7792da8a681b252e2a99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Input pipeline.

Please see the [reading data how-to](../../how_tos/reading_data/index.md)
for context.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from six.moves import xrange  # pylint: disable=redefined-builtin

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import io_ops
from tensorflow.python.ops import logging_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import variables
from tensorflow.python.training import queue_runner


def match_filenames_once(pattern, name=None):
  """Save the list of files matching pattern, so it is only computed once.

  Args:
    pattern: A file pattern (glob).
    name: A name for the operations (optional).

  Returns:
    A variable that is initialized to the list of files matching pattern.
  """
  with ops.op_scope([pattern], name, "matching_filenames") as name:
    return variables.Variable(io_ops.matching_files(pattern), trainable=False,
                              name=name, validate_shape=False)


def limit_epochs(tensor, num_epochs=None, name=None):
  """Returns tensor `num_epochs` times and then raises an `OutOfRange` error.

  Args:
    tensor: Any `Tensor`.
    num_epochs: A positive integer (optional).  If specified, limits the number
      of steps the output tensor may be evaluated.
    name: A name for the operations (optional).

  Returns:
    tensor or `OutOfRange`.

  Raises:
    ValueError: if `num_epochs` is invalid.
  """
  if num_epochs is None:
    return tensor
  if num_epochs <= 0:
    raise ValueError("num_epochs must be > 0 not %d." % num_epochs)
  with ops.op_scope([tensor], name, "limit_epochs") as name:
    zero64 = constant_op.constant(0, dtype=dtypes.int64)
    epochs = variables.Variable(
        zero64, name="epochs", trainable=False,
        collections=[ops.GraphKeys.LOCAL_VARIABLES])
    counter = epochs.count_up_to(num_epochs)
    with ops.control_dependencies([counter]):
      return array_ops.identity(tensor, name=name)


def input_producer(input_tensor, element_shape=None, num_epochs=None,
                   shuffle=True, seed=None, capacity=32, shared_name=None,
                   summary_name=None, name=None):
  """Output the rows of `input_tensor` to a queue for an input pipeline.

  Args:
    input_tensor: A tensor with the rows to produce. Must be at
      one-dimensional. Must either have a fully-defined shape, or
      `element_shape` must be defined.
    element_shape: (Optional.) A `TensorShape` representing the shape of a
      row of `input_tensor`, if it cannot be inferred.
    num_epochs: (Optional.) An integer. If specified `input_producer` produces
      each row of `input_tensor` `num_epochs` times before generating an
      `OutOfRange` error. If not specified, `input_producer` can cycle through
      the rows of `input_tensor` an unlimited number of times.
    shuffle: (Optional.) A boolean. If true, the rows are randomly shuffled
      within each eopch.
    seed: (Optional.) An integer. The seed to use if `shuffle` is true.
    capacity: (Optional.) The capacity of the queue to be used for buffering
      the input.
    shared_name: (Optional.) If set, this queue will be shared under the given
      name across multiple sessions.
    summary_name: (Optional.) If set, a scalar summary for the current queue
      size will be generated, using this name as part of the tag.
    name: (Optional.) A name for queue.

  Returns:
    A queue with the output rows.  A `QueueRunner` for the queue is
    added to the current `QUEUE_RUNNER` collection of the current
    graph.

  Raises:
    ValueError: If the shape of the input cannot be inferred from the arguments.
  """
  with ops.op_scope([input_tensor], name, "input_producer"):
    input_tensor = ops.convert_to_tensor(input_tensor, name="input_tensor")
    element_shape = input_tensor.get_shape()[1:].merge_with(element_shape)
    if not element_shape.is_fully_defined():
      raise ValueError("Either `input_tensor` must have a fully defined shape "
                       "or `element_shape` must be specified")

    if shuffle:
      input_tensor = random_ops.random_shuffle(input_tensor, seed=seed)

    input_tensor = limit_epochs(input_tensor, num_epochs)

    q = data_flow_ops.FIFOQueue(capacity=capacity,
                                dtypes=[input_tensor.dtype.base_dtype],
                                shapes=[element_shape],
                                shared_name=shared_name, name=name)
    enq = q.enqueue_many([input_tensor])
    queue_runner.add_queue_runner(queue_runner.QueueRunner(q, [enq]))
    if summary_name is not None:
      logging_ops.scalar_summary("queue/%s/%s" % (q.name, summary_name),
                                 math_ops.cast(q.size(), dtypes.float32) *
                                 (1. / capacity))
    return q


def string_input_producer(string_tensor, num_epochs=None, shuffle=True,
                          seed=None, capacity=32, shared_name=None, name=None):
  """Output strings (e.g. filenames) to a queue for an input pipeline.

  Args:
    string_tensor: A 1-D string tensor with the strings to produce.
    num_epochs: An integer (optional). If specified, `string_input_producer`
      produces each string from `string_tensor` `num_epochs` times before
      generating an `OutOfRange` error. If not specified,
      `string_input_producer` can cycle through the strings in `string_tensor`
      an unlimited number of times.
    shuffle: Boolean. If true, the strings are randomly shuffled within each
      epoch.
    seed: An integer (optional). Seed used if shuffle == True.
    capacity: An integer. Sets the queue capacity.
    shared_name: (optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: A name for the operations (optional).

  Returns:
    A queue with the output strings.  A `QueueRunner` for the Queue
    is added to the current `Graph`'s `QUEUE_RUNNER` collection.

  Raises:
    ValueError: If the string_tensor is a null Python list.  At runtime,
    will fail with an assertion if string_tensor becomes a null tensor.
  """
  not_null_err = "string_input_producer requires a non-null input tensor"
  if not isinstance(string_tensor, ops.Tensor) and not string_tensor:
    raise ValueError(not_null_err)

  with ops.op_scope([string_tensor], name, "input_producer") as name:
    string_tensor = ops.convert_to_tensor(string_tensor, dtype=dtypes.string)
    with ops.control_dependencies([
        logging_ops.Assert(math_ops.greater(array_ops.size(string_tensor), 0),
                           [not_null_err])]):
      string_tensor = array_ops.identity(string_tensor)
    return input_producer(
        input_tensor=string_tensor,
        element_shape=[],
        num_epochs=num_epochs,
        shuffle=shuffle,
        seed=seed,
        capacity=capacity,
        shared_name=shared_name,
        name=name,
        summary_name="fraction_of_%d_full" % capacity)


def range_input_producer(limit, num_epochs=None, shuffle=True, seed=None,
                         capacity=32, shared_name=None, name=None):
  """Produces the integers from 0 to limit-1 in a queue.

  Args:
    limit: An int32 scalar tensor.
    num_epochs: An integer (optional). If specified, `range_input_producer`
      produces each integer `num_epochs` times before generating an
      OutOfRange error. If not specified, `range_input_producer` can cycle
      through the integers an unlimited number of times.
    shuffle: Boolean. If true, the integers are randomly shuffled within each
      epoch.
    seed: An integer (optional). Seed used if shuffle == True.
    capacity: An integer. Sets the queue capacity.
    shared_name: (optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: A name for the operations (optional).

  Returns:
    A Queue with the output integers.  A `QueueRunner` for the Queue
    is added to the current `Graph`'s `QUEUE_RUNNER` collection.
  """
  with ops.op_scope([limit], name, "input_producer") as name:
    range_tensor = math_ops.range(limit)
    return input_producer(
        range_tensor, [], num_epochs, shuffle, seed, capacity,
        shared_name, name, "fraction_of_%d_full" % capacity)


def slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,
                         capacity=32, shared_name=None, name=None):
  """Produces a slice of each `Tensor` in `tensor_list`.

  Implemented using a Queue -- a `QueueRunner` for the Queue
  is added to the current `Graph`'s `QUEUE_RUNNER` collection.

  Args:
    tensor_list: A list of `Tensor` objects. Every `Tensor` in
      `tensor_list` must have the same size in the first dimension.
    num_epochs: An integer (optional). If specified, `slice_input_producer`
      produces each slice `num_epochs` times before generating
      an `OutOfRange` error. If not specified, `slice_input_producer` can cycle
      through the slices an unlimited number of times.
    shuffle: Boolean. If true, the integers are randomly shuffled within each
      epoch.
    seed: An integer (optional). Seed used if shuffle == True.
    capacity: An integer. Sets the queue capacity.
    shared_name: (optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: A name for the operations (optional).

  Returns:
    A list of tensors, one for each element of `tensor_list`.  If the tensor
    in `tensor_list` has shape `[N, a, b, .., z]`, then the corresponding output
    tensor will have shape `[a, b, ..., z]`.

  Raises:
    ValueError: if `slice_input_producer` produces nothing from `tensor_list`.
  """
  with ops.op_scope(tensor_list, name, "input_producer"):
    tensor_list = ops.convert_n_to_tensor_or_indexed_slices(tensor_list)
    if not tensor_list:
      raise ValueError(
          "Expected at least one tensor in slice_input_producer().")
    range_size = array_ops.shape(tensor_list[0])[0]
    # TODO(josh11b): Add an assertion that the first dimension of
    # everything in TensorList matches. Maybe just check the inferred shapes?
    queue = range_input_producer(range_size, num_epochs=num_epochs,
                                 shuffle=shuffle, seed=seed, capacity=capacity,
                                 shared_name=shared_name)
    index = queue.dequeue()
    output = [array_ops.gather(t, index) for t in tensor_list]
    return output


# Helpers for the batching functions ------------------------------------------


def _flatten(tensor_list_list):
  return [tensor for tensor_list in tensor_list_list for tensor in tensor_list]


class _SparseMetaData(object):
  """Store information about the Tensor: Is it sparse?, dtype, and rank."""

  def __init__(self, sparse, dtype, rank):
    self._sparse = sparse
    self._dtype = dtype
    self._rank = rank

  def __eq__(self, other):
    if self.sparse != other.sparse:
      return False
    if not self.sparse:
      return True
    if self.dtype != other.dtype:
      return False
    if not self.rank.is_compatible_with(other.rank):
      return False
    return True

  def __ne__(self, other):
    return not self.__eq__(other)

  def __str__(self):
    return "[SparseMetaData(%s, %s, %s)]" % (self.sparse, self.dtype, self.rank)

  def merge_with(self, other):
    if self != other:
      raise ValueError("SparseMetaData objects are incompatible: %s vs. %s"
                       % (self, other))
    if self.sparse:
      self.rank.merge_with(other.rank)
    return self

  @property
  def dtype(self):
    return self._dtype

  @property
  def sparse(self):
    return self._sparse

  @property
  def rank(self):
    return self._rank


def _as_tensor_list(tensors):
  if isinstance(tensors, dict):
    return [tensors[k] for k in sorted(tensors)]
  else:
    return tensors


def _as_tensor_list_list(tensors_list):
  if not tensors_list:
    raise ValueError("Expected at least one set of tensors")
  if isinstance(tensors_list[0], dict):
    expected_keys = set(tensors_list[0].keys())
    for tensors in tensors_list[1:]:
      if set(tensors.keys()) != expected_keys:
        raise ValueError("All dictionaries in tensors_list must have "
                         "the same keys")
    return [_as_tensor_list(tensors) for tensors in tensors_list]
  else:
    return tensors_list


def _as_original_type(original_tensors, tensor_list):
  if isinstance(original_tensors, dict):
    if len(original_tensors) == 1:
      # tensor_list is bogusly returned as a single tensor if only one tensor
      # was enqueued.  Make it a list again.  See b/28117485.
      tensor_list = [tensor_list]
    return {k: tensor_list[i]
            for i, k in enumerate(sorted(original_tensors))}
  else:
    return tensor_list


def _serialize_sparse_tensors(tensor_list, enqueue_many):
  """Serialize SparseTensors for feeding into batch, etc."""

  def _sparse_meta_data(t):
    if not isinstance(t, ops.SparseTensor):
      return _SparseMetaData(False, None, None)
    rank = t.shape.get_shape().with_rank(1)[0]
    if enqueue_many:
      rank -= 1
    return _SparseMetaData(sparse=True, dtype=t.dtype, rank=rank)

  def _maybe_serialize(t):
    if not isinstance(t, ops.SparseTensor):
      return t
    return (sparse_ops.serialize_many_sparse(t) if enqueue_many
            else sparse_ops.serialize_sparse(t))

  serialized_list = [_maybe_serialize(t) for t in tensor_list]
  sparse_info_list = [_sparse_meta_data(t) for t in tensor_list]
  return serialized_list, sparse_info_list


def _serialize_sparse_tensors_join(tensor_list_list, enqueue_many):
  """Serialize SparseTensors for feeding into batch_join, etc."""
  (s0, sparse_info_list) = _serialize_sparse_tensors(
      tensor_list_list[0], enqueue_many)
  serialized_list_list = [s0]
  for tensor_list in tensor_list_list[1:]:
    s, sparse_info_candidate = _serialize_sparse_tensors(
        tensor_list, enqueue_many)
    if sparse_info_list != sparse_info_candidate:
      raise ValueError("Inconsistent SparseTensors list: %s vs. %s"
                       % (tensor_list_list[0], tensor_list))
    sparse_info_list = [
        info.merge_with(candidate)
        for (info, candidate) in zip(sparse_info_list, sparse_info_candidate)]
    serialized_list_list.append(s)

  return (serialized_list_list, sparse_info_list)


def _deserialize_sparse_tensors(serialized_list, sparse_info_list):
  """Deserialize SparseTensors after dequeue in batch, batch_join, etc."""
  received_sequence = isinstance(serialized_list, collections.Sequence)
  if not received_sequence:
    serialized_list = (serialized_list,)
  tensors = [
      sparse_ops.deserialize_many_sparse(s, info.dtype, (info.rank + 1).value)
      if info.sparse else s
      for (s, info)
      in zip(serialized_list, sparse_info_list)]
  return tensors if received_sequence else tensors[0]


def _validate(tensor_list):
  tensor_list = ops.convert_n_to_tensor_or_indexed_slices(tensor_list)
  if not tensor_list:
    raise ValueError("Expected at least one tensor in batch().")
  return tensor_list


def _validate_join(tensor_list_list):
  tensor_list_list = [ops.convert_n_to_tensor_or_indexed_slices(tl)
                      for tl in tensor_list_list]
  if not tensor_list_list:
    raise ValueError("Expected at least one input in batch_join().")
  return tensor_list_list


def _dtypes(tensor_list_list):
  all_types = [[t.dtype for t in tl] for tl in tensor_list_list]
  types = all_types[0]
  for other_types in all_types[1:]:
    if other_types != types:
      raise TypeError("Expected types to be consistent: %s vs. %s." %
                      (", ".join(x.name for x in types),
                       ", ".join(x.name for x in other_types)))
  return types


def _merge_shapes(shape_list, enqueue_many):
  shape_list = [tensor_shape.as_shape(s) for s in shape_list]
  if enqueue_many:
    # We want the shapes without the leading batch dimension.
    shape_list = [s.with_rank_at_least(1)[1:] for s in shape_list]
  merged_shape = shape_list[0]
  for s in shape_list[1:]:
    merged_shape.merge_with(s)
  return merged_shape.as_list()


def _shapes(tensor_list_list, shapes, enqueue_many):
  """Calculate and merge the shapes of incoming tensors.

  Args:
    tensor_list_list: List of tensor lists.
    shapes: List of shape tuples corresponding to tensors within the lists.
    enqueue_many: Boolean describing whether shapes will be enqueued as
      batches or individual entries.

  Returns:
    A list of shapes aggregating shape inference info from `tensor_list_list`,
    or returning `shapes` if it is not `None`.

  Raises:
    ValueError: If any of the inferred shapes in `tensor_list_list` lack a
      well defined rank.
  """
  if shapes is None:
    len0 = len(tensor_list_list[0])

    for tl in tensor_list_list:
      for i in xrange(len0):
        if tl[i].get_shape().ndims is None:
          raise ValueError("Cannot infer Tensor's rank: %s" % tl[i])

    shapes = [_merge_shapes(
        [tl[i].get_shape().as_list() for tl in tensor_list_list], enqueue_many)
              for i in xrange(len0)]
  return shapes


def _enqueue_join(queue, tensor_list_list, enqueue_many):
  if enqueue_many:
    enqueue_ops = [queue.enqueue_many(tl) for tl in tensor_list_list]
  else:
    enqueue_ops = [queue.enqueue(tl) for tl in tensor_list_list]
  queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops))


def _enqueue(queue, tensor_list, threads, enqueue_many):
  if enqueue_many:
    enqueue_ops = [queue.enqueue_many(tensor_list)] * threads
  else:
    enqueue_ops = [queue.enqueue(tensor_list)] * threads
  queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops))


def _which_queue(dynamic_pad):
  return (data_flow_ops.PaddingFIFOQueue if dynamic_pad
          else data_flow_ops.FIFOQueue)


# Batching functions ----------------------------------------------------------


def batch(tensors, batch_size, num_threads=1, capacity=32,
          enqueue_many=False, shapes=None, dynamic_pad=False,
          allow_smaller_final_batch=False, shared_name=None, name=None):
  """Creates batches of tensors in `tensors`.

  The argument `tensors` can be a list or a dictionary of tensors.
  The value returned by the function will be of the same type
  as `tensors`.

  This function is implemented using a queue. A `QueueRunner` for the
  queue is added to the current `Graph`'s `QUEUE_RUNNER` collection.

  If `enqueue_many` is `False`, `tensors` is assumed to represent a single
  example.  An input tensor with shape `[x, y, z]` will be output as a tensor
  with shape `[batch_size, x, y, z]`.

  If `enqueue_many` is `True`, `tensors` is assumed to represent a batch of
  examples, where the first dimension is indexed by example, and all members of
  `tensor_list` should have the same size in the first dimension.  If an input
  tensor has shape `[*, x, y, z]`, the output will have shape `[batch_size, x,
  y, z]`.  The `capacity` argument controls the how long the prefetching is
  allowed to grow the queues.

  The returned operation is a dequeue operation and will throw
  `tf.errors.OutOfRangeError` if the input queue is exhausted. If this
  operation is feeding another input queue, its queue runner will catch
  this exception, however, if this operation is used in your main thread
  you are responsible for catching this yourself.

  *N.B.:* If `dynamic_pad` is `False`, you must ensure that either
  (i) the `shapes` argument is passed, or (ii) all of the tensors in
  `tensors` must have fully-defined shapes. `ValueError` will be
  raised if neither of these conditions holds.

  If `dynamic_pad` is `True`, it is sufficient that the *rank* of the
  tensors is known, but individual dimensions may have shape `None`.
  In this case, for each enqueue the dimensions with value `None`
  may have a variable length; upon dequeue, the output tensors will be padded
  on the right to the maximum shape of the tensors in the current minibatch.
  For numbers, this padding takes value 0.  For strings, this padding is
  the empty string.  See `PaddingFIFOQueue` for more info.

  If `allow_smaller_final_batch` is `True`, a smaller batch value than
  `batch_size` is returned when the queue is closed and there are not enough
  elements to fill the batch, otherwise the pending elements are discarded.
  In addition, all output tensors' static shapes, as accessed via the
  `get_shape` method will have a first `Dimension` value of `None`, and
  operations that depend on fixed batch_size would fail.

  Args:
    tensors: The list or dictionary of tensors to enqueue.
    batch_size: The new batch size pulled from the queue.
    num_threads: The number of threads enqueuing `tensor_list`.
    capacity: An integer. The maximum number of elements in the queue.
    enqueue_many: Whether each tensor in `tensor_list` is a single example.
    shapes: (Optional) The shapes for each example.  Defaults to the
      inferred shapes for `tensor_list`.
    dynamic_pad: Boolean.  Allow variable dimensions in input shapes.
      The given dimensions are padded upon dequeue so that tensors within a
      batch have the same shapes.
    allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final
      batch to be smaller if there are insufficient items left in the queue.
    shared_name: (Optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: (Optional) A name for the operations.

  Returns:
    A list or dictionary of tensors with the same types as `tensors`.

  Raises:
    ValueError: If the `shapes` are not specified, and cannot be
      inferred from the elements of `tensors`.
  """
  tensor_list = _as_tensor_list(tensors)
  with ops.op_scope(tensor_list, name, "batch") as name:
    tensor_list = _validate(tensor_list)
    (tensor_list, sparse_info) = _serialize_sparse_tensors(
        tensor_list, enqueue_many)
    types = _dtypes([tensor_list])
    shapes = _shapes([tensor_list], shapes, enqueue_many)
    # TODO(josh11b,mrry): Switch to BatchQueue once it is written.
    queue = _which_queue(dynamic_pad)(
        capacity=capacity, dtypes=types, shapes=shapes, shared_name=shared_name)
    _enqueue(queue, tensor_list, num_threads, enqueue_many)
    logging_ops.scalar_summary(
        "queue/%s/fraction_of_%d_full" % (queue.name, capacity),
        math_ops.cast(queue.size(), dtypes.float32) * (1. / capacity))

    if allow_smaller_final_batch:
      dequeued = queue.dequeue_up_to(batch_size, name=name)
    else:
      dequeued = queue.dequeue_many(batch_size, name=name)
    dequeued = _deserialize_sparse_tensors(dequeued, sparse_info)
    return _as_original_type(tensors, dequeued)


# TODO(josh11b): Add a thread_multiplier or num_threads (that has to be
# a multiple of len(tensor_list_list)?) parameter, to address the use
# case where you want more parallelism than you can support different
# readers (either because you don't have that many files or can't
# read that many files in parallel due to the number of seeks required).
# Once this is done, batch() can be written as a call to batch_join().
def batch_join(tensors_list, batch_size, capacity=32, enqueue_many=False,
               shapes=None, dynamic_pad=False, allow_smaller_final_batch=False,
               shared_name=None, name=None):
  """Runs a list of tensors to fill a queue to create batches of examples.

  The `tensors_list` argument is a list of tuples of tensors, or a list of
  dictionaries of tensors.  Each element in the list is treated similarily
  to the `tensors` argument of `tf.train.batch()`.

  Enqueues a different list of tensors in different threads.
  Implemented using a queue -- a `QueueRunner` for the queue
  is added to the current `Graph`'s `QUEUE_RUNNER` collection.

  `len(tensors_list)` threads will be started,
  with thread `i` enqueuing the tensors from
  `tensors_list[i]`. `tensors_list[i1][j]` must match
  `tensors_list[i2][j]` in type and shape, except in the first
  dimension if `enqueue_many` is true.

  If `enqueue_many` is `False`, each `tensors_list[i]` is assumed
  to represent a single example. An input tensor `x` will be output as a
  tensor with shape `[batch_size] + x.shape`.

  If `enqueue_many` is `True`, `tensors_list[i]` is assumed to
  represent a batch of examples, where the first dimension is indexed
  by example, and all members of `tensors_list[i]` should have the
  same size in the first dimension.  The slices of any input tensor
  `x` are treated as examples, and the output tensors will have shape
  `[batch_size] + x.shape[1:]`.

  The `capacity` argument controls the how long the prefetching is allowed to
  grow the queues.

  The returned operation is a dequeue operation and will throw
  `tf.errors.OutOfRangeError` if the input queue is exhausted. If this
  operation is feeding another input queue, its queue runner will catch
  this exception, however, if this operation is used in your main thread
  you are responsible for catching this yourself.

  *N.B.:* If `dynamic_pad` is `False`, you must ensure that either
  (i) the `shapes` argument is passed, or (ii) all of the tensors in
  `tensors_list` must have fully-defined shapes. `ValueError` will be
  raised if neither of these conditions holds.

  If `dynamic_pad` is `True`, it is sufficient that the *rank* of the
  tensors is known, but individual dimensions may have value `None`.
  In this case, for each enqueue the dimensions with value `None`
  may have a variable length; upon dequeue, the output tensors will be padded
  on the right to the maximum shape of the tensors in the current minibatch.
  For numbers, this padding takes value 0.  For strings, this padding is
  the empty string.  See `PaddingFIFOQueue` for more info.

  If `allow_smaller_final_batch` is `True`, a smaller batch value than
  `batch_size` is returned when the queue is closed and there are not enough
  elements to fill the batch, otherwise the pending elements are discarded.
  In addition, all output tensors' static shapes, as accessed via the
  `get_shape` method will have a first `Dimension` value of `None`, and
  operations that depend on fixed batch_size would fail.

  Args:
    tensors_list: A list of tuples or dictionaries of tensors to enqueue.
    batch_size: An integer. The new batch size pulled from the queue.
    capacity: An integer. The maximum number of elements in the queue.
    enqueue_many: Whether each tensor in `tensor_list_list` is a single
      example.
    shapes: (Optional) The shapes for each example.  Defaults to the
      inferred shapes for `tensor_list_list[i]`.
    dynamic_pad: Boolean.  Allow variable dimensions in input shapes.
      The given dimensions are padded upon dequeue so that tensors within a
      batch have the same shapes.
    allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final
      batch to be smaller if there are insufficient items left in the queue.
    shared_name: (Optional) If set, this queue will be shared under the given
      name across multiple sessions.
    name: (Optional) A name for the operations.

  Returns:
    A list or dictionary of tensors with the same number and types as
    `tensors_list[i]`.

  Raises:
    ValueError: If the `shapes` are not specified, and cannot be
      inferred from the elements of `tensor_list_list`.
  """
  tensor_list_list = _as_tensor_list_list(tensors_list)
  with ops.op_scope(_flatten(tensor_list_list), name, "batch_join") as name:
    tensor_list_list = _validate_join(tensor_list_list)
    tensor_list_list, sparse_info = _serialize_sparse_tensors_join(
        tensor_list_list, enqueue_many)
    types = _dtypes(tensor_list_list)
    shapes = _shapes(tensor_list_list, shapes, enqueue_many)
    # TODO(josh11b,mrry): Switch to BatchQueue once it is written.
    queue = _which_queue(dynamic_pad)(
        capacity=capacity, dtypes=types, shapes=shapes, shared_name=shared_name)
    _enqueue_join(queue, tensor_list_list, enqueue_many)
    logging_ops.scalar_summary(
        "queue/%s/fraction_of_%d_full" % (queue.name, capacity),
        math_ops.cast(queue.size(), dtypes.float32) * (1. / capacity))

    if allow_smaller_final_batch:
      dequeued = queue.dequeue_up_to(batch_size, name=name)
    else:
      dequeued = queue.dequeue_many(batch_size, name=name)
    dequeued = _deserialize_sparse_tensors(dequeued, sparse_info)
    # tensors_list was validated to not be empty.
    return _as_original_type(tensors_list[0], dequeued)


def shuffle_batch(tensors, batch_size, capacity, min_after_dequeue,
                  num_threads=1, seed=None, enqueue_many=False, shapes=None,
                  allow_smaller_final_batch=False, shared_name=None, name=None):
  """Creates batches by randomly shuffling tensors.

  This function adds the following to the current `Graph`:

  * A shuffling queue into which tensors from `tensors` are enqueued.
  * A `dequeue_many` operation to create batches from the queue.
  * A `QueueRunner` to `QUEUE_RUNNER` collection, to enqueue the tensors
    from `tensors`.

  If `enqueue_many` is `False`, `tensors` is assumed to represent a
  single example.  An input tensor with shape `[x, y, z]` will be output
  as a tensor with shape `[batch_size, x, y, z]`.

  If `enqueue_many` is `True`, `tensors` is assumed to represent a
  batch of examples, where the first dimension is indexed by example,
  and all members of `tensors` should have the same size in the
  first dimension.  If an input tensor has shape `[*, x, y, z]`, the
  output will have shape `[batch_size, x, y, z]`.

  The `capacity` argument controls the how long the prefetching is allowed to
  grow the queues.

  The returned operation is a dequeue operation and will throw
  `tf.errors.OutOfRangeError` if the input queue is exhausted. If this
  operation is feeding another input queue, its queue runner will catch
  this exception, however, if this operation is used in your main thread
  you are responsible for catching this yourself.

  For example:

  ```python
  # Creates batches of 32 images and 32 labels.
  image_batch, label_batch = tf.train.shuffle_batch(
        [single_image, single_label],
        batch_size=32,
        num_threads=4,
        capacity=50000,
        min_after_dequeue=10000)
  ```

  *N.B.:* You must ensure that either (i) the `shapes` argument is
  passed, or (ii) all of the tensors in `tensors` must have
  fully-defined shapes. `ValueError` will be raised if neither of
  these conditions holds.

  If `allow_smaller_final_batch` is `True`, a smaller batch value than
  `batch_size` is returned when the queue is closed and there are not enough
  elements to fill the batch, otherwise the pending elements are discarded.
  In addition, all output tensors' static shapes, as accessed via the
  `get_shape` method will have a first `Dimension` value of `None`, and
  operations that depend on fixed batch_size would fail.

  Args:
    tensors: The list or dictionary of tensors to enqueue.
    batch_size: The new batch size pulled from the queue.
    capacity: An integer. The maximum number of elements in the queue.
    min_after_dequeue: Minimum number elements in the queue after a
      dequeue, used to ensure a level of mixing of elements.
    num_threads: The number of threads enqueuing `tensor_list`.
    seed: Seed for the random shuffling within the queue.
    enqueue_many: Whether each tensor in `tensor_list` is a single example.
    shapes: (Optional) The shapes for each example.  Defaults to the
      inferred shapes for `tensor_list`.
    allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final
      batch to be smaller if there are insufficient items left in the queue.
    shared_name: (Optional) If set, this queue will be shared under the given
      name across multiple sessions.
    name: (Optional) A name for the operations.

  Returns:
    A list or dictionary of tensors with the types as `tensors`.

  Raises:
    ValueError: If the `shapes` are not specified, and cannot be
      inferred from the elements of `tensors`.
  """
  tensor_list = _as_tensor_list(tensors)
  with ops.op_scope(tensor_list, name, "shuffle_batch") as name:
    tensor_list = _validate(tensor_list)
    tensor_list, sparse_info = _serialize_sparse_tensors(
        tensor_list, enqueue_many)
    types = _dtypes([tensor_list])
    shapes = _shapes([tensor_list], shapes, enqueue_many)
    queue = data_flow_ops.RandomShuffleQueue(
        capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed,
        dtypes=types, shapes=shapes, shared_name=shared_name)
    _enqueue(queue, tensor_list, num_threads, enqueue_many)
    full = (math_ops.cast(math_ops.maximum(0, queue.size() - min_after_dequeue),
                          dtypes.float32) *
            (1. / (capacity - min_after_dequeue)))
    # Note that name contains a '/' at the end so we intentionally do not place
    # a '/' after %s below.
    summary_name = (
        "queue/%sfraction_over_%d_of_%d_full" %
        (name, min_after_dequeue, capacity - min_after_dequeue))
    logging_ops.scalar_summary(summary_name, full)

    if allow_smaller_final_batch:
      dequeued = queue.dequeue_up_to(batch_size, name=name)
    else:
      dequeued = queue.dequeue_many(batch_size, name=name)
    dequeued = _deserialize_sparse_tensors(dequeued, sparse_info)
    return _as_original_type(tensors, dequeued)


def shuffle_batch_join(tensors_list, batch_size, capacity,
                       min_after_dequeue, seed=None, enqueue_many=False,
                       shapes=None, allow_smaller_final_batch=False,
                       shared_name=None, name=None):
  """Create batches by randomly shuffling tensors.

  The `tensors_list` argument is a list of tuples of tensors, or a list of
  dictionaries of tensors.  Each element in the list is treated similarily
  to the `tensors` argument of `tf.train.shuffle_batch()`.

  This version enqueues a different list of tensors in different threads.
  It adds the following to the current `Graph`:

  * A shuffling queue into which tensors from `tensors_list` are enqueued.
  * A `dequeue_many` operation to create batches from the queue.
  * A `QueueRunner` to `QUEUE_RUNNER` collection, to enqueue the tensors
    from `tensors_list`.

  `len(tensors_list)` threads will be started, with thread `i` enqueuing
  the tensors from `tensors_list[i]`. `tensors_list[i1][j]` must match
  `tensors_list[i2][j]` in type and shape, except in the first dimension if
  `enqueue_many` is true.

  If `enqueue_many` is `False`, each `tensors_list[i]` is assumed
  to represent a single example.  An input tensor with shape `[x, y, z]`
  will be output as a tensor with shape `[batch_size, x, y, z]`.

  If `enqueue_many` is `True`, `tensors_list[i]` is assumed to
  represent a batch of examples, where the first dimension is indexed
  by example, and all members of `tensors_list[i]` should have the
  same size in the first dimension.  If an input tensor has shape `[*, x,
  y, z]`, the output will have shape `[batch_size, x, y, z]`.

  The `capacity` argument controls the how long the prefetching is allowed to
  grow the queues.

  The returned operation is a dequeue operation and will throw
  `tf.errors.OutOfRangeError` if the input queue is exhausted. If this
  operation is feeding another input queue, its queue runner will catch
  this exception, however, if this operation is used in your main thread
  you are responsible for catching this yourself.

  If `allow_smaller_final_batch` is `True`, a smaller batch value than
  `batch_size` is returned when the queue is closed and there are not enough
  elements to fill the batch, otherwise the pending elements are discarded.
  In addition, all output tensors' static shapes, as accessed via the
  `get_shape` method will have a first `Dimension` value of `None`, and
  operations that depend on fixed batch_size would fail.

  Args:
    tensors_list: A list of tuples or dictionaries of tensors to enqueue.
    batch_size: An integer. The new batch size pulled from the queue.
    capacity: An integer. The maximum number of elements in the queue.
    min_after_dequeue: Minimum number elements in the queue after a
      dequeue, used to ensure a level of mixing of elements.
    seed: Seed for the random shuffling within the queue.
    enqueue_many: Whether each tensor in `tensor_list_list` is a single
      example.
    shapes: (Optional) The shapes for each example.  Defaults to the
      inferred shapes for `tensors_list[i]`.
    allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final
      batch to be smaller if there are insufficient items left in the queue.
    shared_name: (optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: (Optional) A name for the operations.

  Returns:
    A list or dictionary of tensors with the same number and types as
    `tensors_list[i]`.

  Raises:
    ValueError: If the `shapes` are not specified, and cannot be
      inferred from the elements of `tensors_list`.
  """
  tensor_list_list = _as_tensor_list_list(tensors_list)
  with ops.op_scope(
      _flatten(tensor_list_list), name, "shuffle_batch_join") as name:
    tensor_list_list = _validate_join(tensor_list_list)
    tensor_list_list, sparse_info = _serialize_sparse_tensors_join(
        tensor_list_list, enqueue_many)
    types = _dtypes(tensor_list_list)
    shapes = _shapes(tensor_list_list, shapes, enqueue_many)
    queue = data_flow_ops.RandomShuffleQueue(
        capacity=capacity, min_after_dequeue=min_after_dequeue, seed=seed,
        dtypes=types, shapes=shapes, shared_name=shared_name)
    _enqueue_join(queue, tensor_list_list, enqueue_many)
    full = (math_ops.cast(math_ops.maximum(0, queue.size() - min_after_dequeue),
                          dtypes.float32) *
            (1. / (capacity - min_after_dequeue)))
    # Note that name contains a '/' at the end so we intentionally do not place
    # a '/' after %s below.
    summary_name = (
        "queue/%sfraction_over_%d_of_%d_full" %
        (name, min_after_dequeue, capacity - min_after_dequeue))
    logging_ops.scalar_summary(summary_name, full)

    if allow_smaller_final_batch:
      dequeued = queue.dequeue_up_to(batch_size, name=name)
    else:
      dequeued = queue.dequeue_many(batch_size, name=name)
    dequeued = _deserialize_sparse_tensors(dequeued, sparse_info)
    # tensors_list was validated to not be empty.
    return _as_original_type(tensors_list[0], dequeued)