aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/tools/optimize_for_inference_lib.py
blob: 8e040dcef71d62f6c1616c2f4d7b3bc5eeb598b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# pylint: disable=g-bad-file-header
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Removes parts of a graph that are only needed for training.

There are several common transformations that can be applied to GraphDefs
created to train a model, that help reduce the amount of computation needed when
the network is used only for inference. These include:

 - Removing training-only operations like checkpoint saving.

 - Stripping out parts of the graph that are never reached.

 - Removing debug operations like CheckNumerics.

 - Folding batch normalization ops into the pre-calculated weights.

 - Fusing common operations into unified versions.

This script takes a frozen GraphDef file (where the weight variables have been
converted into constants by the freeze_graph script) and outputs a new GraphDef
with the optimizations applied.

An example of command-line usage is:

bazel build tensorflow/python/tools:optimize_for_inference && \
bazel-bin/tensorflow/python/tools/optimize_for_inference \
--input_graph=some_graph_def.pb \
--output_graph=/tmp/optimized_graph.pb \
--input_names=Mul \
--output_names=softmax

"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import math
import re
import numpy as np
import tensorflow as tf

from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_util
from tensorflow.python.tools import strip_unused_lib

flags = tf.app.flags
FLAGS = flags.FLAGS


def optimize_for_inference(input_graph_def, input_node_names,
                           output_node_names, placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: Data type of the placeholders used for inputs.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def


def ensure_graph_is_valid(graph_def):
  """Makes sure that the graph is internally consistent.

  Checks basic properties of the graph def and raises an exception if there are
  input references to missing nodes, duplicated names, or other logic errors.

  Args:
    graph_def: Definition of a graph to be checked.

  Raises:
    ValueError: If the graph is incorrectly constructed.
  """
  node_map = {}
  for node in graph_def.node:
    if node.name not in node_map.keys():
      node_map[node.name] = node
    else:
      raise ValueError("Duplicate node names detected for ", node.name)
  for node in graph_def.node:
    for input_name in node.input:
      input_node_name = node_name_from_input(input_name)
      if input_node_name not in node_map.keys():
        raise ValueError("Input for ", node.name, " not found: ", input_name)


def node_name_from_input(node_name):
  """Strips off ports and other decorations to get the underlying node name."""
  if node_name.startswith("^"):
    node_name = node_name[1:]
  m = re.search(r"(.*):\d+$", node_name)
  if m:
    node_name = m.group(1)
  return node_name


def node_from_map(node_map, name):
  """Pulls a node def from a dictionary for a given name.

  Args:
    node_map: Dictionary containing an entry indexed by name for every node.
    name: Identifies the node we want to find.

  Returns:
    NodeDef of the node with the given name.

  Raises:
    ValueError: If the node isn't present in the dictionary.
  """
  stripped_name = node_name_from_input(name)
  if stripped_name not in node_map:
    raise ValueError("No node named '%s' found in map." % name)
  return node_map[stripped_name]


def values_from_const(node_def):
  """Extracts the values from a const NodeDef as a numpy ndarray.

  Args:
    node_def: Const NodeDef that has the values we want to access.

  Returns:
    Numpy ndarray containing the values.

  Raises:
    ValueError: If the node isn't a Const.
  """
  if node_def.op != "Const":
    raise ValueError(
        "Node named '%s' should be a Const op for values_from_const." %
        node_def.name)
  input_tensor = node_def.attr["value"].tensor
  tensor_value = tensor_util.MakeNdarray(input_tensor)
  return tensor_value


def fold_batch_norms(input_graph_def):
  """Removes batch normalization ops by folding them into convolutions.

  Batch normalization during training has multiple dynamic parameters that are
  updated, but once the graph is finalized these become constants. That means
  there's an opportunity to reduce the computations down to a scale and
  addition, rather than the more expensive multiple ops, and even bake the
  scaling into the convolution weights. This function identifies the typical
  pattern of batch normalization subgraphs, and performs the transformation to
  fold the computations down into a simpler form. It currently only spots batch
  normalization that's performed by the BatchNormWithGlobalNormalization op, and
  will need to be extended in the future to handle the newer style.

  Args:
    input_graph_def: A GraphDef containing a model.

  Returns:
    Modified graph with BN ops removed, and modified weights.

  Raises:
    ValueError: If the graph is badly formed with duplicate node names.
  """

  input_node_map = {}
  for node in input_graph_def.node:
    if node.name not in input_node_map.keys():
      input_node_map[node.name] = node
    else:
      raise ValueError("Duplicate node names detected for ", node.name)

  nodes_to_skip = {}
  new_ops = []
  for node in input_graph_def.node:
    if node.op != "BatchNormWithGlobalNormalization":
      continue

    conv_op = node_from_map(input_node_map, node.input[0])
    if conv_op.op != "Conv2D":
      tf.logging.warning("Didn't find expected Conv2D input to '%s'" %
                         node.name)
      continue

    weights_op = node_from_map(input_node_map, conv_op.input[1])
    if weights_op.op != "Const":
      tf.logging.warning("Didn't find expected conv Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" %
                         (conv_op.name, weights_op))
      continue
    weights = values_from_const(weights_op)
    channel_count = weights.shape[3]

    mean_op = node_from_map(input_node_map, node.input[1])
    if mean_op.op != "Const":
      tf.logging.warning("Didn't find expected mean Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" %
                         (node.name, mean_op))
      continue
    mean_value = values_from_const(mean_op)
    if mean_value.shape != (channel_count,):
      tf.logging.warning("Incorrect shape for mean, found %s, expected %s,"
                         " for node %s" % (str(mean_value.shape),
                                           str((channel_count,)),
                                           node.name))
      continue

    var_op = node_from_map(input_node_map, node.input[2])
    if var_op.op != "Const":
      tf.logging.warning("Didn't find expected var Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" %
                         (node.name, var_op))
      continue
    var_value = values_from_const(var_op)
    if var_value.shape != (channel_count,):
      tf.logging.warning("Incorrect shape for var, found %s, expected %s,"
                         " for node %s" % (str(var_value.shape),
                                           str((channel_count,)),
                                           node.name))
      continue

    beta_op = node_from_map(input_node_map, node.input[3])
    if beta_op.op != "Const":
      tf.logging.warning("Didn't find expected beta Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" %
                         (node.name, beta_op))
      continue
    beta_value = values_from_const(beta_op)
    if beta_value.shape != (channel_count,):
      tf.logging.warning("Incorrect shape for beta, found %s, expected %s,"
                         " for node %s" % (str(beta_value.shape),
                                           str((channel_count,)),
                                           node.name))
      continue

    gamma_op = node_from_map(input_node_map, node.input[4])
    if gamma_op.op != "Const":
      tf.logging.warning("Didn't find expected gamma Constant input to '%s',"
                         " found %s instead. Maybe because freeze_graph wasn't"
                         " run first?" %
                         (node.name, gamma_op))
      continue
    gamma_value = values_from_const(gamma_op)
    if gamma_value.shape != (channel_count,):
      tf.logging.warning("Incorrect shape for gamma, found %s, expected %s,"
                         " for node %s" % (str(gamma_value.shape),
                                           str((channel_count,)),
                                           node.name))
      continue

    variance_epsilon_value = node.attr["variance_epsilon"].f
    scale_after_normalization = node.attr["scale_after_normalization"].b
    nodes_to_skip[node.name] = True
    nodes_to_skip[weights_op.name] = True
    nodes_to_skip[mean_op.name] = True
    nodes_to_skip[var_op.name] = True
    nodes_to_skip[beta_op.name] = True
    nodes_to_skip[gamma_op.name] = True
    nodes_to_skip[conv_op.name] = True

    if scale_after_normalization:
      scale_value = ((1.0 / np.vectorize(math.sqrt)
                      (var_value + variance_epsilon_value)) *
                     gamma_value)
    else:
      scale_value = (1.0 / np.vectorize(math.sqrt)
                     (var_value + variance_epsilon_value))
    offset_value = (-mean_value * scale_value) + beta_value
    scaled_weights = np.copy(weights)
    it = np.nditer(scaled_weights, flags=["multi_index"],
                   op_flags=["readwrite"])
    while not it.finished:
      current_scale = scale_value[it.multi_index[3]]
      it[0] *= current_scale
      it.iternext()
    scaled_weights_op = tf.NodeDef()
    scaled_weights_op.op = "Const"
    scaled_weights_op.name = weights_op.name
    scaled_weights_op.attr["dtype"].CopyFrom(weights_op.attr["dtype"])
    scaled_weights_op.attr["value"].CopyFrom(tf.AttrValue(
        tensor=tensor_util.make_tensor_proto(
            scaled_weights, weights.dtype.type, weights.shape)))
    new_conv_op = tf.NodeDef()
    new_conv_op.CopyFrom(conv_op)
    offset_op = tf.NodeDef()
    offset_op.op = "Const"
    offset_op.name = conv_op.name + "_bn_offset"
    offset_op.attr["dtype"].CopyFrom(mean_op.attr["dtype"])
    offset_op.attr["value"].CopyFrom(tf.AttrValue(
        tensor=tensor_util.make_tensor_proto(
            offset_value, mean_value.dtype.type, offset_value.shape)))
    bias_add_op = tf.NodeDef()
    bias_add_op.op = "BiasAdd"
    bias_add_op.name = node.name
    bias_add_op.attr["T"].CopyFrom(conv_op.attr["T"])
    bias_add_op.input.extend([new_conv_op.name, offset_op.name])
    new_ops.extend([scaled_weights_op, new_conv_op, offset_op, bias_add_op])

  result_graph_def = tf.GraphDef()
  for node in input_graph_def.node:
    if node.name in nodes_to_skip:
      continue
    new_node = tf.NodeDef()
    new_node.CopyFrom(node)
    result_graph_def.node.extend([new_node])

  result_graph_def.node.extend(new_ops)
  return result_graph_def


def fuse_resize_and_conv(input_graph_def, output_node_names):
  """Merges preceding resize and mirror pad ops into a specialized convolution.

  There's a common pattern of enlarging the input to a convolution using a
  resize operation, and also using MirrorPad to extend the boundaries to that
  zero edge pixels don't bleed inwards when convolving. This routine looks for
  that pattern of operations, and fuses them together into a Conv2DWithResizeOp.

  Args:
    input_graph_def: A GraphDef containing a model.

  Returns:
    Modified graph with resize and pad ops merged.

  Raises:
    ValueError: If the graph is badly formed with duplicate node names.
  """

  input_node_map = {}
  for node in input_graph_def.node:
    if node.name not in input_node_map.keys():
      input_node_map[node.name] = node
    else:
      raise ValueError("Duplicate node names detected for ", node.name)

  node_reference_count = collections.defaultdict(int)
  for node in input_graph_def.node:
    for input_name in node.input:
      stripped_name = node_name_from_input(input_name)
      node_reference_count[stripped_name] += 1
  for output_name in output_node_names:
    node_reference_count[output_name] += 1

  new_ops = []
  for node in input_graph_def.node:

    if node.op != "Conv2D":
      continue
    conv_op = node

    input_op = node_from_map(input_node_map, conv_op.input[0])
    if input_op.op == "MirrorPad":
      mirror_pad_op = input_op
      resize_op = node_from_map(input_node_map, mirror_pad_op.input[0])
      if resize_op.op != "ResizeBilinear":
        resize_op = None
    else:
      mirror_pad_op = None
      if input_op.op == "ResizeBilinear":
        resize_op = input_op
      else:
        resize_op = None

    # There are no ops to be fused into the conv, so skip replacing this one.
    if not mirror_pad_op and not resize_op:
      continue

    # We're replacing this node, so make sure the old one is removed.
    node_reference_count[conv_op.name] = 0
    if mirror_pad_op:
      node_reference_count[mirror_pad_op.name] -= 1
    if resize_op:
      node_reference_count[resize_op.name] -= 1

    fused_conv_op = tf.NodeDef()
    if resize_op:
      fused_conv_op.op = "FusedResizeAndPadConv2D"
    else:
      fused_conv_op.op = "FusedPadConv2D"
    fused_conv_op.name = conv_op.name
    if mirror_pad_op:
      mirror_paddings_name = mirror_pad_op.input[1]
      mirror_paddings_mode = mirror_pad_op.attr["mode"]
    else:
      # If there was no MirrorPad op, then create settings that make the padding
      # stage of the fused operation a no-op.
      paddings_op = tf.NodeDef()
      paddings_op.op = "Const"
      paddings_op.name = conv_op.name + "_dummy_paddings"
      paddings_op.attr["dtype"].CopyFrom(tf.AttrValue(
          type=tf.int32.as_datatype_enum))
      paddings_op.attr["value"].CopyFrom(tf.AttrValue(
          tensor=tensor_util.make_tensor_proto(
              [0, 0, 0, 0, 0, 0, 0, 0], tf.int32, [4, 2])))
      new_ops.extend([paddings_op])
      mirror_paddings_name = paddings_op.name
      mirror_paddings_mode = tf.AttrValue(s=b"REFLECT")
    if resize_op:
      fused_conv_op.input.extend([resize_op.input[0], resize_op.input[1],
                                  mirror_paddings_name, conv_op.input[1]])
      fused_conv_op.attr["resize_align_corners"].CopyFrom(
          resize_op.attr["align_corners"])
    else:
      fused_conv_op.input.extend([mirror_pad_op.input[0], mirror_paddings_name,
                                  conv_op.input[1]])
    fused_conv_op.attr["T"].CopyFrom(conv_op.attr["T"])
    fused_conv_op.attr["mode"].CopyFrom(mirror_paddings_mode)
    fused_conv_op.attr["strides"].CopyFrom(conv_op.attr["strides"])
    fused_conv_op.attr["padding"].CopyFrom(conv_op.attr["padding"])
    new_ops.extend([fused_conv_op])

  result_graph_def = tf.GraphDef()
  for node in input_graph_def.node:
    if node_reference_count[node.name] < 1:
      continue
    new_node = tf.NodeDef()
    new_node.CopyFrom(node)
    result_graph_def.node.extend([new_node])

  result_graph_def.node.extend(new_ops)
  return result_graph_def