aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/spectral_ops.py
blob: 293aace7282eb0f8dde9da75b0d353a560c0ecb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Spectral operators (e.g. DCT, FFT, RFFT)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math as _math

from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import tensor_util as _tensor_util
from tensorflow.python.ops import array_ops as _array_ops
from tensorflow.python.ops import gen_spectral_ops
from tensorflow.python.ops import math_ops as _math_ops
from tensorflow.python.util.tf_export import tf_export


def _infer_fft_length_for_rfft(input_tensor, fft_rank):
  """Infers the `fft_length` argument for a `rank` RFFT from `input_tensor`."""
  # A TensorShape for the inner fft_rank dimensions.
  fft_shape = input_tensor.get_shape()[-fft_rank:]

  # If any dim is unknown, fall back to tensor-based math.
  if not fft_shape.is_fully_defined():
    return _array_ops.shape(input_tensor)[-fft_rank:]

  # Otherwise, return a constant.
  return _ops.convert_to_tensor(fft_shape.as_list(), _dtypes.int32)


def _infer_fft_length_for_irfft(input_tensor, fft_rank):
  """Infers the `fft_length` argument for a `rank` IRFFT from `input_tensor`."""
  # A TensorShape for the inner fft_rank dimensions.
  fft_shape = input_tensor.get_shape()[-fft_rank:]

  # If any dim is unknown, fall back to tensor-based math.
  if not fft_shape.is_fully_defined():
    fft_length = _array_ops.unstack(_array_ops.shape(input_tensor)[-fft_rank:])
    fft_length[-1] = _math_ops.maximum(0, 2 * (fft_length[-1] - 1))
    return _array_ops.stack(fft_length)

  # Otherwise, return a constant.
  fft_length = fft_shape.as_list()
  if fft_length:
    fft_length[-1] = max(0, 2 * (fft_length[-1] - 1))
  return _ops.convert_to_tensor(fft_length, _dtypes.int32)


def _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length, is_reverse=False):
  """Pads `input_tensor` to `fft_length` on its inner-most `fft_rank` dims."""
  fft_shape = _tensor_util.constant_value_as_shape(fft_length)

  # Edge case: skip padding empty tensors.
  if (input_tensor.shape.ndims is not None and
      any(dim.value == 0 for dim in input_tensor.shape)):
    return input_tensor

  # If we know the shapes ahead of time, we can either skip or pre-compute the
  # appropriate paddings. Otherwise, fall back to computing paddings in
  # TensorFlow.
  if fft_shape.is_fully_defined() and input_tensor.shape.ndims is not None:
    # Slice the last FFT-rank dimensions from input_tensor's shape.
    input_fft_shape = input_tensor.shape[-fft_shape.ndims:]

    if input_fft_shape.is_fully_defined():
      # In reverse, we only pad the inner-most dimension to fft_length / 2 + 1.
      if is_reverse:
        fft_shape = fft_shape[:-1].concatenate(fft_shape[-1].value // 2 + 1)

      paddings = [[0, max(fft_dim.value - input_dim.value, 0)]
                  for fft_dim, input_dim in zip(fft_shape, input_fft_shape)]
      if any(pad > 0 for _, pad in paddings):
        outer_paddings = [[0, 0]] * max((input_tensor.shape.ndims -
                                         fft_shape.ndims), 0)
        return _array_ops.pad(input_tensor, outer_paddings + paddings)
      return input_tensor

  # If we can't determine the paddings ahead of time, then we have to pad. If
  # the paddings end up as zero, tf.pad has a special-case that does no work.
  input_rank = _array_ops.rank(input_tensor)
  input_fft_shape = _array_ops.shape(input_tensor)[-fft_rank:]
  outer_dims = _math_ops.maximum(0, input_rank - fft_rank)
  outer_paddings = _array_ops.zeros([outer_dims], fft_length.dtype)
  # In reverse, we only pad the inner-most dimension to fft_length / 2 + 1.
  if is_reverse:
    fft_length = _array_ops.concat([fft_length[:-1],
                                    fft_length[-1:] // 2 + 1], 0)
  fft_paddings = _math_ops.maximum(0, fft_length - input_fft_shape)
  paddings = _array_ops.concat([outer_paddings, fft_paddings], 0)
  paddings = _array_ops.stack([_array_ops.zeros_like(paddings), paddings],
                              axis=1)
  return _array_ops.pad(input_tensor, paddings)


def _rfft_wrapper(fft_fn, fft_rank, default_name):
  """Wrapper around gen_spectral_ops.rfft* that infers fft_length argument."""

  def _rfft(input_tensor, fft_length=None, name=None):
    with _ops.name_scope(name, default_name,
                         [input_tensor, fft_length]) as name:
      input_tensor = _ops.convert_to_tensor(input_tensor, _dtypes.float32)
      input_tensor.shape.with_rank_at_least(fft_rank)
      if fft_length is None:
        fft_length = _infer_fft_length_for_rfft(input_tensor, fft_rank)
      else:
        fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
      input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length)
      return fft_fn(input_tensor, fft_length, name)
  _rfft.__doc__ = fft_fn.__doc__
  return _rfft


def _irfft_wrapper(ifft_fn, fft_rank, default_name):
  """Wrapper around gen_spectral_ops.irfft* that infers fft_length argument."""

  def _irfft(input_tensor, fft_length=None, name=None):
    with _ops.name_scope(name, default_name,
                         [input_tensor, fft_length]) as name:
      input_tensor = _ops.convert_to_tensor(input_tensor, _dtypes.complex64)
      input_tensor.shape.with_rank_at_least(fft_rank)
      if fft_length is None:
        fft_length = _infer_fft_length_for_irfft(input_tensor, fft_rank)
      else:
        fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
      input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length,
                                         is_reverse=True)
      return ifft_fn(input_tensor, fft_length, name)
  _irfft.__doc__ = ifft_fn.__doc__
  return _irfft


fft = gen_spectral_ops.fft
ifft = gen_spectral_ops.ifft
fft2d = gen_spectral_ops.fft2d
ifft2d = gen_spectral_ops.ifft2d
fft3d = gen_spectral_ops.fft3d
ifft3d = gen_spectral_ops.ifft3d
rfft = _rfft_wrapper(gen_spectral_ops.rfft, 1, "rfft")
tf_export("spectral.rfft")(rfft)
irfft = _irfft_wrapper(gen_spectral_ops.irfft, 1, "irfft")
tf_export("spectral.irfft")(irfft)
rfft2d = _rfft_wrapper(gen_spectral_ops.rfft2d, 2, "rfft2d")
tf_export("spectral.rfft2d")(rfft2d)
irfft2d = _irfft_wrapper(gen_spectral_ops.irfft2d, 2, "irfft2d")
tf_export("spectral.irfft2d")(irfft2d)
rfft3d = _rfft_wrapper(gen_spectral_ops.rfft3d, 3, "rfft3d")
tf_export("spectral.rfft3d")(rfft3d)
irfft3d = _irfft_wrapper(gen_spectral_ops.irfft3d, 3, "irfft3d")
tf_export("spectral.irfft3d")(irfft3d)


def _validate_dct_arguments(dct_type, n, axis, norm):
  if n is not None:
    raise NotImplementedError("The DCT length argument is not implemented.")
  if axis != -1:
    raise NotImplementedError("axis must be -1. Got: %s" % axis)
  if dct_type not in (2, 3):
    raise ValueError("Only Types II and III (I)DCT are supported.")
  if norm not in (None, "ortho"):
    raise ValueError(
        "Unknown normalization. Expected None or 'ortho', got: %s" % norm)


# TODO(rjryan): Implement `type`, `n` and `axis` parameters.
@tf_export("spectral.dct")
def dct(input, type=2, n=None, axis=-1, norm=None, name=None):  # pylint: disable=redefined-builtin
  """Computes the 1D [Discrete Cosine Transform (DCT)][dct] of `input`.

  Currently only Types II and III are supported. Type II is implemented using a
  length `2N` padded @{tf.spectral.rfft}, as described here:
  https://dsp.stackexchange.com/a/10606. Type III is a fairly straightforward
  inverse of Type II (i.e. using a length `2N` padded @{tf.spectral.irfft}).

  @compatibility(scipy)
  Equivalent to scipy.fftpack.dct for Type-II and Type-III DCT.
  https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html
  @end_compatibility

  Args:
    input: A `[..., samples]` `float32` `Tensor` containing the signals to
      take the DCT of.
    type: The DCT type to perform. Must be 2 or 3.
    n: For future expansion. The length of the transform. Must be `None`.
    axis: For future expansion. The axis to compute the DCT along. Must be `-1`.
    norm: The normalization to apply. `None` for no normalization or `'ortho'`
      for orthonormal normalization.
    name: An optional name for the operation.

  Returns:
    A `[..., samples]` `float32` `Tensor` containing the DCT of `input`.

  Raises:
    ValueError: If `type` is not `2` or `3`, `n` is not `None, `axis` is not
      `-1`, or `norm` is not `None` or `'ortho'`.

  [dct]: https://en.wikipedia.org/wiki/Discrete_cosine_transform
  """
  _validate_dct_arguments(type, n, axis, norm)
  with _ops.name_scope(name, "dct", [input]):
    # We use the RFFT to compute the DCT and TensorFlow only supports float32
    # for FFTs at the moment.
    input = _ops.convert_to_tensor(input, dtype=_dtypes.float32)

    axis_dim = input.shape[-1].value or _array_ops.shape(input)[-1]
    axis_dim_float = _math_ops.to_float(axis_dim)
    if type == 2:
      scale = 2.0 * _math_ops.exp(
          _math_ops.complex(
              0.0, -_math_ops.range(axis_dim_float) * _math.pi * 0.5 /
              axis_dim_float))

      # TODO(rjryan): Benchmark performance and memory usage of the various
      # approaches to computing a DCT via the RFFT.
      dct2 = _math_ops.real(
          rfft(input, fft_length=[2 * axis_dim])[..., :axis_dim] * scale)

      if norm == "ortho":
        n1 = 0.5 * _math_ops.rsqrt(axis_dim_float)
        n2 = n1 * _math_ops.sqrt(2.0)
        # Use tf.pad to make a vector of [n1, n2, n2, n2, ...].
        weights = _array_ops.pad(
            _array_ops.expand_dims(n1, 0), [[0, axis_dim - 1]],
            constant_values=n2)
        dct2 *= weights

      return dct2

    elif type == 3:
      if norm == "ortho":
        n1 = _math_ops.sqrt(axis_dim_float)
        n2 = n1 * _math_ops.sqrt(0.5)
        # Use tf.pad to make a vector of [n1, n2, n2, n2, ...].
        weights = _array_ops.pad(
            _array_ops.expand_dims(n1, 0), [[0, axis_dim - 1]],
            constant_values=n2)
        input *= weights
      else:
        input *= axis_dim_float
      scale = 2.0 * _math_ops.exp(
          _math_ops.complex(
              0.0,
              _math_ops.range(axis_dim_float) * _math.pi * 0.5 /
              axis_dim_float))
      dct3 = _math_ops.real(
          irfft(
              scale * _math_ops.complex(input, 0.0),
              fft_length=[2 * axis_dim]))[..., :axis_dim]

      return dct3


# TODO(rjryan): Implement `type`, `n` and `axis` parameters.
@tf_export("spectral.idct")
def idct(input, type=2, n=None, axis=-1, norm=None, name=None):  # pylint: disable=redefined-builtin
  """Computes the 1D [Inverse Discrete Cosine Transform (DCT)][idct] of `input`.

  Currently only Types II and III are supported. Type III is the inverse of
  Type II, and vice versa.

  Note that you must re-normalize by 1/(2n) to obtain an inverse if `norm` is
  not `'ortho'`. That is:
  `signal == idct(dct(signal)) * 0.5 / signal.shape[-1]`.
  When `norm='ortho'`, we have:
  `signal == idct(dct(signal, norm='ortho'), norm='ortho')`.

  @compatibility(scipy)
  Equivalent to scipy.fftpack.idct for Type-II and Type-III DCT.
  https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.idct.html
  @end_compatibility

  Args:
    input: A `[..., samples]` `float32` `Tensor` containing the signals to take
      the DCT of.
    type: The IDCT type to perform. Must be 2 or 3.
    n: For future expansion. The length of the transform. Must be `None`.
    axis: For future expansion. The axis to compute the DCT along. Must be `-1`.
    norm: The normalization to apply. `None` for no normalization or `'ortho'`
      for orthonormal normalization.
    name: An optional name for the operation.

  Returns:
    A `[..., samples]` `float32` `Tensor` containing the IDCT of `input`.

  Raises:
    ValueError: If `type` is not `2` or `3`, `n` is not `None, `axis` is not
      `-1`, or `norm` is not `None` or `'ortho'`.

  [idct]:
  https://en.wikipedia.org/wiki/Discrete_cosine_transform#Inverse_transforms
  """
  _validate_dct_arguments(type, n, axis, norm)
  inverse_type = {2: 3, 3: 2}[type]
  return dct(input, type=inverse_type, n=n, axis=axis, norm=norm, name=name)