aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/spectral_grad.py
blob: 0af24114acbe5fa6283191f9d71e32805eba3f29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gradients for operators defined in spectral_ops.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import spectral_ops


def _FFTSizeForGrad(grad, rank):
  return math_ops.reduce_prod(array_ops.shape(grad)[-rank:])


@ops.RegisterGradient("FFT")
def _FFTGrad(_, grad):
  size = math_ops.cast(_FFTSizeForGrad(grad, 1), grad.dtype)
  return spectral_ops.ifft(grad) * size


@ops.RegisterGradient("IFFT")
def _IFFTGrad(_, grad):
  rsize = math_ops.cast(
      1. / math_ops.cast(_FFTSizeForGrad(grad, 1), grad.dtype.real_dtype),
      grad.dtype)
  return spectral_ops.fft(grad) * rsize


@ops.RegisterGradient("FFT2D")
def _FFT2DGrad(_, grad):
  size = math_ops.cast(_FFTSizeForGrad(grad, 2), grad.dtype)
  return spectral_ops.ifft2d(grad) * size


@ops.RegisterGradient("IFFT2D")
def _IFFT2DGrad(_, grad):
  rsize = math_ops.cast(
      1. / math_ops.cast(_FFTSizeForGrad(grad, 2), grad.dtype.real_dtype),
      grad.dtype)
  return spectral_ops.fft2d(grad) * rsize


@ops.RegisterGradient("FFT3D")
def _FFT3DGrad(_, grad):
  size = math_ops.cast(_FFTSizeForGrad(grad, 3), grad.dtype)
  return spectral_ops.ifft3d(grad) * size


@ops.RegisterGradient("IFFT3D")
def _IFFT3DGrad(_, grad):
  rsize = math_ops.cast(
      1. / math_ops.cast(_FFTSizeForGrad(grad, 3), grad.dtype.real_dtype),
      grad.dtype)
  return spectral_ops.fft3d(grad) * rsize


def _RFFTGradHelper(rank, irfft_fn):
  """Returns a gradient function for an RFFT of the provided rank."""
  # Can't happen because we don't register a gradient for RFFT3D.
  assert rank in (1, 2), "Gradient for RFFT3D is not implemented."

  def _Grad(op, grad):
    """A gradient function for RFFT with the provided `rank` and `irfft_fn`."""
    fft_length = op.inputs[1]
    input_shape = array_ops.shape(op.inputs[0])
    is_even = math_ops.cast(1 - (fft_length[-1] % 2), dtypes.complex64)

    def _TileForBroadcasting(matrix, t):
      expanded = array_ops.reshape(
          matrix,
          array_ops.concat([
              array_ops.ones([array_ops.rank(t) - 2], dtypes.int32),
              array_ops.shape(matrix)
          ], 0))
      return array_ops.tile(
          expanded, array_ops.concat([array_ops.shape(t)[:-2], [1, 1]], 0))

    def _MaskMatrix(length):
      # TODO(rjryan): Speed up computation of twiddle factors using the
      # following recurrence relation and cache them across invocations of RFFT.
      #
      # t_n = exp(sqrt(-1) * pi * n^2 / line_len)
      # for n = 0, 1,..., line_len-1.
      # For n > 2, use t_n = t_{n-1}^2 / t_{n-2} * t_1^2
      a = array_ops.tile(
          array_ops.expand_dims(math_ops.range(length), 0), (length, 1))
      b = array_ops.transpose(a, [1, 0])
      return math_ops.exp(-2j * np.pi * math_ops.cast(a * b, dtypes.complex64) /
                          math_ops.cast(length, dtypes.complex64))

    def _YMMask(length):
      """A sequence of [1+0j, -1+0j, 1+0j, -1+0j, ...] with length `length`."""
      return math_ops.cast(1 - 2 * (math_ops.range(length) % 2),
                           dtypes.complex64)

    y0 = grad[..., 0:1]
    if rank == 1:
      ym = grad[..., -1:]
      extra_terms = y0 + is_even * ym * _YMMask(input_shape[-1])
    elif rank == 2:
      # Create a mask matrix for y0 and ym.
      base_mask = _MaskMatrix(input_shape[-2])

      # Tile base_mask to match y0 in shape so that we can batch-matmul the
      # inner 2 dimensions.
      tiled_mask = _TileForBroadcasting(base_mask, y0)

      y0_term = math_ops.matmul(tiled_mask, math_ops.conj(y0))
      extra_terms = y0_term

      ym = grad[..., -1:]
      ym_term = math_ops.matmul(tiled_mask, math_ops.conj(ym))

      inner_dim = input_shape[-1]
      ym_term = array_ops.tile(
          ym_term,
          array_ops.concat([
              array_ops.ones([array_ops.rank(grad) - 1], dtypes.int32),
              [inner_dim]
          ], 0)) * _YMMask(inner_dim)

      extra_terms += is_even * ym_term

    # The gradient of RFFT is the IRFFT of the incoming gradient times a scaling
    # factor, plus some additional terms to make up for the components dropped
    # due to Hermitian symmetry.
    input_size = math_ops.to_float(_FFTSizeForGrad(op.inputs[0], rank))
    irfft = irfft_fn(grad, fft_length)
    return 0.5 * (irfft * input_size + math_ops.real(extra_terms)), None

  return _Grad


def _IRFFTGradHelper(rank, rfft_fn):
  """Returns a gradient function for an IRFFT of the provided rank."""
  # Can't happen because we don't register a gradient for IRFFT3D.
  assert rank in (1, 2), "Gradient for IRFFT3D is not implemented."

  def _Grad(op, grad):
    """A gradient function for IRFFT with the provided `rank` and `rfft_fn`."""
    # Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs
    # and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the
    # graph we special-case the situation where the FFT length and last
    # dimension of the input are known at graph construction time.
    fft_length = op.inputs[1]
    is_odd = math_ops.mod(fft_length[-1], 2)
    input_last_dimension = array_ops.shape(op.inputs[0])[-1]
    mask = array_ops.concat(
        [[1.0], 2.0 * array_ops.ones([input_last_dimension - 2 + is_odd]),
         array_ops.ones([1 - is_odd])], 0)

    rsize = math_ops.reciprocal(math_ops.to_float(_FFTSizeForGrad(grad, rank)))

    # The gradient of IRFFT is the RFFT of the incoming gradient times a scaling
    # factor and a mask. The mask scales the gradient for the Hermitian
    # symmetric components of the RFFT by a factor of two, since these
    # components are de-duplicated in the RFFT.
    rfft = rfft_fn(grad, fft_length)
    return rfft * math_ops.cast(rsize * mask, dtypes.complex64), None

  return _Grad


ops.RegisterGradient("RFFT")(_RFFTGradHelper(1, spectral_ops.irfft))
ops.RegisterGradient("IRFFT")(_IRFFTGradHelper(1, spectral_ops.rfft))
ops.RegisterGradient("RFFT2D")(_RFFTGradHelper(2, spectral_ops.irfft2d))
ops.RegisterGradient("IRFFT2D")(_IRFFTGradHelper(2, spectral_ops.rfft2d))