aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/sparse_ops.py
blob: c0dca6156d81517bfcdfb31ef967742b419808f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
"""## Sparse Tensor Representation.

Tensorflow supports a `SparseTensor` representation for data that is sparse
in multiple dimensions. Contrast this representation with `IndexedSlices`,
which is efficient for representing tensors that are sparse in their first
dimension, and dense along all other dimensions.

@@SparseTensor
@@SparseTensorValue

## Sparse to Dense Conversion.

@@sparse_to_dense
@@sparse_tensor_to_dense
@@sparse_to_indicator

## Manipulation.

@@sparse_concat
@@sparse_reorder
@@sparse_retain
@@sparse_fill_empty_rows
"""
import tensorflow.python.platform

import numpy as np

from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.framework import types
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import constant_op
from tensorflow.python.ops import gen_sparse_ops
from tensorflow.python.ops import math_ops
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_sparse_ops import *
# pylint: enable=wildcard-import
# pylint: disable=protected-access


def sparse_concat(concat_dim, sp_inputs, name=None):
  """Concatenates a list of `SparseTensor` along the specified dimension.

  Concatenation is with respect to the dense versions of each sparse input.
  It is assumed that each inputs is a `SparseTensor` whose elements are ordered
  along increasing dimension number.

  All inputs' shapes must match, except for the concat dimension.  The
  `indices`, `values`, and `shapes` lists must have the same length.

  The output shape is identical to the inputs', except along the concat
  dimension, where it is the sum of the inputs' sizes along that dimension.

  The output elements will be resorted to preserve the sort order along
  increasing dimension number.

  This op runs in `O(M log M)` time, where `M` is the total number of non-empty
  values across all inputs. This is due to the need for an internal sort in
  order to concatenate efficiently across an arbitrary dimension.

  For example, if `concat_dim = 1` and the inputs are

      sp_inputs[0]: shape = [2, 3]
      [0, 2]: "a"
      [1, 0]: "b"
      [1, 1]: "c"

      sp_inputs[1]: shape = [2, 4]
      [0, 1]: "d"
      [0, 2]: "e"

  then the output will be

      shape = [2, 7]
      [0, 2]: "a"
      [0, 4]: "d"
      [0, 5]: "e"
      [1, 0]: "b"
      [1, 1]: "c"

  Graphically this is equivalent to doing

      [    a] concat [  d e  ] = [    a   d e  ]
      [b c  ]        [       ]   [b c          ]

  Args:
    concat_dim: Dimension to concatenate along.
    sp_inputs: List of `SparseTensor` to concatenate.
    name: A name prefix for the returned tensors (optional).

  Returns:
    A `SparseTensor` with the concatenated output.

  Raises:
    TypeError: If `sp_inputs` is not a list of `SparseTensor`.
  """
  if not isinstance(sp_inputs, list):
    raise TypeError("Inputs must be a list")
  if not all(isinstance(sp_input, ops.SparseTensor) for sp_input in sp_inputs):
    raise TypeError("All inputs must be SparseTensors")

  if len(sp_inputs) == 1:  # Degenerate case of one tensor.
    return sp_inputs[0]

  inds = [sp_input.indices for sp_input in sp_inputs]
  vals = [sp_input.values for sp_input in sp_inputs]
  shapes = [sp_input.shape for sp_input in sp_inputs]

  output_ind, output_val, output_shape = (
      gen_sparse_ops._sparse_concat(
          inds,
          vals,
          shapes,
          concat_dim,
          name=name))

  return ops.SparseTensor(output_ind, output_val, output_shape)


@ops.RegisterShape("SparseConcat")
def _SparseConcatShape(op):
  """Shape function for SparseConcat op."""
  num_inputs = int(op.get_attr("N"))

  # TF flattens and concatenates all list inputs, so reconstruct the lists here.
  ind_shapes = [ind.get_shape().with_rank(2) for ind in op.inputs[0:num_inputs]]
  val_shapes = [val.get_shape().with_rank(1)
                for val in op.inputs[num_inputs:2 * num_inputs]]
  shape_shapes = [shape.get_shape().with_rank(1)
                  for shape in op.inputs[2 * num_inputs:]]

  output_ind_rows = tensor_shape.Dimension(0)
  output_ind_cols = tensor_shape.Dimension(None)
  output_val_elems = tensor_shape.Dimension(0)
  output_shape_shape = tensor_shape.TensorShape(None)

  for i in range(num_inputs):
    num_elems_i = ind_shapes[i][0].merge_with(val_shapes[i][0])
    output_ind_rows += num_elems_i
    output_ind_cols = output_ind_cols.merge_with(ind_shapes[i][1])
    output_val_elems += num_elems_i
    output_shape_shape = output_shape_shape.merge_with(shape_shapes[i])

  output_ind_shape = tensor_shape.matrix(output_ind_rows, output_ind_cols)
  output_val_shape = tensor_shape.vector(output_val_elems)

  return [output_ind_shape, output_val_shape, output_shape_shape]


def sparse_reorder(sp_input, name=None):
  """Reorders a `SparseTensor` into the canonical, row-major ordering.

  Note that by convention, all sparse ops preserve the canonical ordering
  along increasing dimension number. The only time ordering can be violated
  is during manual manipulation of the indices and values to add entries.

  Reordering does not affect the shape of the `SparseTensor`.

  For example, if sp_input has shape `[4, 5]` and `indices` / `values`:

      [0, 3]: b
      [0, 1]: a
      [3, 1]: d
      [2, 0]: c

  then the output will be a `SparseTensor` of shape `[4, 5]` and
  `indices` / `values`:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c
      [3, 1]: d

  Args:
    sp_input: The input `SparseTensor`.
    name: A name prefix for the returned tensors (optional)

  Returns:
    A `SparseTensor` with the same shape and non-empty values, but in
    canonical ordering.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  if not isinstance(sp_input, ops.SparseTensor):
    raise TypeError("Input must be a SparseTensor")

  reordered_ind, reordered_val = (
      gen_sparse_ops._sparse_reorder(
          sp_input.indices,
          sp_input.values,
          sp_input.shape,
          name=name))

  return ops.SparseTensor(
      reordered_ind, reordered_val, array_ops.identity(sp_input.shape))


@ops.RegisterShape("SparseReorder")
def _SparseReorderShape(op):
  """Shape function for SparseReorder op."""
  input_indices_shape = op.inputs[0].get_shape().with_rank(2)
  input_values_shape = op.inputs[1].get_shape().with_rank(1)
  unused_shape_shape = op.inputs[2].get_shape().with_rank(1)

  return [input_indices_shape, input_values_shape]


@ops.RegisterShape("SparseToDense")
def _SparseToDenseShape(op):
  input_shape = tensor_util.ConstantValue(op.inputs[1])
  if input_shape is not None:
    if np.ndim(input_shape) > 1:
      raise ValueError("Input shape should be a vector")
    return [tensor_shape.TensorShape(input_shape.tolist())]
  else:
    input_shape_shape = op.inputs[1].get_shape().with_rank_at_most(1)
    return [tensor_shape.unknown_shape(ndims=input_shape_shape.num_elements())]


def sparse_tensor_to_dense(sp_input, default_value, name=None):
  """Converts a `SparseTensor` into a dense tensor.

  This op is a convenience wrapper around `sparse_to_dense` for `SparseTensor`s.

  For example, if `sp_input` has shape `[3, 5]` and non-empty string values:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c

  and `default_value` is `x`, then the output will be a dense `[3, 5]`
  string tensor with values:

      [[x a x b x]
       [x x x x x]
       [c x x x x]]

  Args:
    sp_input: The input `SparseTensor`.
    default_value: Scalar value to set for indices not specified in
      `sp_input`.
    name: A name prefix for the returned tensors (optional).

  Returns:
    A dense tensor with shape `sp_input.shape` and values specified by
    the non-empty values in `sp_input`. Indices not in `sp_input` are assigned
    `default_value`.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  if not isinstance(sp_input, ops.SparseTensor):
    raise TypeError("Input must be a SparseTensor")

  return gen_sparse_ops.sparse_to_dense(
      sp_input.indices,
      sp_input.shape,
      sp_input.values,
      default_value,
      name=name)


def sparse_to_indicator(sp_input, vocab_size, name=None):
  """Converts a `SparseTensor` of ids into a dense bool indicator tensor.

  The last dimension of `sp_input` is discarded and replaced with the values of
  `sp_input`.  If `sp_input.shape = [D0, D1, ..., Dn, K]`, then
  `output.shape = [D0, D1, ..., Dn, vocab_size]`, where

      output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True

  and False elsewhere in `output`.

  For example, if `sp_input.shape = [2, 3, 4]` with non-empty values:

      [0, 0, 0]: 0
      [0, 1, 0]: 10
      [1, 0, 3]: 103
      [1, 1, 2]: 112
      [1, 1, 3]: 113
      [1, 2, 1]: 121

  and `vocab_size = 200`, then the output will be a `[2, 3, 200]` dense bool
  tensor with False everywhere except at positions

      (0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 112), (1, 1, 113), (1, 2, 121).

  This op is useful for converting `SparseTensor`s into dense formats for
  compatibility with ops that expect dense tensors.

  The input `SparseTensor` must be in row-major order.

  Args:
    sp_input: A `SparseTensor` of type `int32` or `int64`.
    vocab_size: The new size of the last dimension, with
      `all(0 <= sp_input.values < vocab_size)`.
    name: A name prefix for the returned tensors (optional)

  Returns:
    A dense bool indicator tensor representing the indices with specified value.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  if not isinstance(sp_input, ops.SparseTensor):
    raise TypeError("Input must be a SparseTensor")

  with ops.op_scope([sp_input], name, "SparseToIndicator") as name:
    indices_shape = array_ops.shape(sp_input.indices)
    num_entries = indices_shape[0]
    rank = indices_shape[1]

    ids = sp_input.values
    if ids.dtype != types.int64:
      ids = math_ops.cast(ids, types.int64)

    # Slice off the last dimension of indices, then then tack on the ids
    indices_columns_to_preserve = array_ops.slice(
        sp_input.indices, [0, 0], array_ops.pack([-1, rank - 1]))
    new_indices = array_ops.concat(
        1, [indices_columns_to_preserve, array_ops.reshape(ids, [-1, 1])])

    new_values = array_ops.fill(array_ops.expand_dims(num_entries, 0), True)
    new_shape = array_ops.concat(
        0, [array_ops.slice(sp_input.shape, [0],
                            array_ops.expand_dims(rank - 1, 0)), [vocab_size]])

    sp_new = ops.SparseTensor(new_indices, new_values, new_shape)

    return sparse_tensor_to_dense(sp_new, False, name=name)


def sparse_retain(sp_input, to_retain):
  """Retains specified non-empty values within a `SparseTensor`.

  For example, if `sp_input` has shape `[4, 5]` and 4 non-empty string values:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c
      [3, 1]: d

  and `to_retain = [True, False, False, True]`, then the output will
  be a `SparseTensor` of shape `[4, 5]` with 2 non-empty values:

      [0, 1]: a
      [3, 1]: d

  Args:
    sp_input: The input `SparseTensor` with `N` non-empty elements.
    to_retain: A bool vector of length `N` with `M` true values.

  Returns:
    A `SparseTensor` with the same shape as the input and `M` non-empty
    elements corresponding to the true positions in `to_retain`.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  if not isinstance(sp_input, ops.SparseTensor):
    raise TypeError("Input must be a SparseTensor")

  to_retain = ops.convert_to_tensor(to_retain)

  # Shape checking, if shape is known at graph construction time
  retain_shape = to_retain.get_shape()
  retain_shape.assert_has_rank(1)
  sp_input.values.get_shape()[0].merge_with(retain_shape[0])

  where_true = array_ops.reshape(array_ops.where(to_retain), [-1])
  new_indices = array_ops.gather(sp_input.indices, where_true)
  new_values = array_ops.gather(sp_input.values, where_true)
  return ops.SparseTensor(
      new_indices, new_values, array_ops.identity(sp_input.shape))


def sparse_fill_empty_rows(sp_input, default_value, name=None):
  """Fills empty rows in the input 2-D `SparseTensor` with a default value.

  This op adds entries with the specified `default_value` at index
  `[row, 0]` for any row in the input that does not already have a value.

  For example, suppose `sp_input` has shape `[5, 6]` and non-empty values:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c
      [3, 1]: d

  Rows 1 and 4 are empty, so the output will be of shape `[5, 6]` with values:

      [0, 1]: a
      [0, 3]: b
      [1, 0]: default_value
      [2, 0]: c
      [3, 1]: d
      [4, 0]: default_value

  Note that the input may have empty columns at the end, with no effect on
  this op.

  The output `SparseTensor` will be in row-major order and will have the
  same shape as the input.

  This op also returns an indicator vector such that

      empty_row_indicator[i] = True iff row i was an empty row.

  Args:
    sp_input: A `SparseTensor` with shape `[N, M]`.
    default_value: The value to fill for empty rows, with the same type as
      `sp_input.`
    name: A name prefix for the returned tensors (optional)

  Returns:
    sp_ordered_output: A `SparseTensor` with shape `[N, M]`, and with all empty
      rows filled in with `default_value`.
    empty_row_indicator: A bool vector of length `N` indicating whether each
      input row was empty.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  if not isinstance(sp_input, ops.SparseTensor):
    raise TypeError("Input must be a SparseTensor")

  with ops.op_scope([sp_input], name, "SparseFillEmptyRows"):
    default_value = ops.convert_to_tensor(
        default_value, dtype=sp_input.values.dtype)

    num_rows = math_ops.cast(sp_input.shape[0], types.int32)
    all_row_indices = math_ops.cast(
        math_ops.range(0, num_rows, 1), types.int64)
    empty_row_indices, _ = array_ops.list_diff(
        all_row_indices, sp_input.indices[:, 0])
    empty_row_indicator = gen_sparse_ops.sparse_to_dense(
        empty_row_indices, array_ops.expand_dims(sp_input.shape[0], -1), True,
        False)

    empty_row_indices_as_column = array_ops.reshape(empty_row_indices, [-1, 1])
    additional_indices = array_ops.concat(
        1,
        [empty_row_indices_as_column,
         array_ops.zeros_like(empty_row_indices_as_column)])
    additional_values = array_ops.fill(array_ops.shape(empty_row_indices),
                                       default_value)

    all_indices_unordered = array_ops.concat(
        0, [sp_input.indices, additional_indices])
    all_values_unordered = array_ops.concat(
        0, [sp_input.values, additional_values])
    sp_unordered_output = ops.SparseTensor(
        all_indices_unordered, all_values_unordered, sp_input.shape)
    sp_ordered_output = sparse_reorder(sp_unordered_output)

    return sp_ordered_output, empty_row_indicator