aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/sparse_ops.py
blob: 7e3dbdbad4c651089ff88d0e5570010db3e5ecdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

# pylint: disable=g-short-docstring-punctuation
"""Sparse Tensor Representation.

See the [Sparse Ops](https://tensorflow.org/api_guides/python/sparse_ops) guide.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import numbers

import numpy as np

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_sparse_ops
from tensorflow.python.ops import math_ops
# go/tf-wildcard-import
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_sparse_ops import *
# pylint: enable=wildcard-import
from tensorflow.python.util import compat
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export


def _convert_to_sparse_tensor(sp_input):
  """Convert `sp_input` to `SparseTensor` and return it.

  Args:
    sp_input: `SparseTensor` or `SparseTensorValue`.

  Returns:
    `sp_input` converted to `SparseTensor`.

  Raises:
    ValueError: if `sp_input` is neither `SparseTensor` nor `SparseTensorValue`.
  """
  if isinstance(sp_input, sparse_tensor.SparseTensorValue):
    return sparse_tensor.SparseTensor.from_value(sp_input)
  if not isinstance(sp_input, sparse_tensor.SparseTensor):
    raise TypeError("Input must be a SparseTensor.")
  return sp_input


def _convert_to_sparse_tensors(sp_inputs):
  """Convert `sp_inputs` to `SparseTensor` objects and return them.

  Args:
    sp_inputs: `list` or `tuple` of `SparseTensor` or `SparseTensorValue`
      objects.

  Returns:
    `sp_inputs` converted to `SparseTensor` objects.

  Raises:
    ValueError: if any item in `sp_inputs` is neither `SparseTensor` nor
      `SparseTensorValue`.
  """
  if isinstance(sp_inputs, list):
    return [_convert_to_sparse_tensor(sp_input) for sp_input in sp_inputs]
  if isinstance(sp_inputs, tuple):
    return (_convert_to_sparse_tensor(sp_input) for sp_input in sp_inputs)
  raise TypeError("Inputs must be a list or tuple.")


def _make_int64_tensor(value, name):
  if isinstance(value, compat.integral_types):
    return ops.convert_to_tensor(value, name=name, dtype=dtypes.int64)
  if not isinstance(value, ops.Tensor):
    raise TypeError("{} must be an integer value".format(name))
  if value.dtype == dtypes.int64:
    return value
  return math_ops.cast(value, dtypes.int64)


@tf_export("sparse.expand_dims")
def sparse_expand_dims(sp_input, axis=None, name=None):
  """Inserts a dimension of 1 into a tensor's shape.

  Given a tensor `sp_input`, this operation inserts a dimension of 1 at the
  dimension index `axis` of `sp_input`'s shape. The dimension index `axis`
  starts at zero; if you specify a negative number for `axis` it is counted
  backwards from the end.

  Args:
    sp_input: A `SparseTensor`.
    axis: 0-D (scalar). Specifies the dimension index at which to expand the
      shape of `input`. Must be in the range `[-rank(sp_input) - 1,
      rank(sp_input)]`.
    name: The name of the output `SparseTensor`.

  Returns:
    A `SparseTensor` with the same data as `sp_input`, but its shape has an
    additional dimension of size 1 added.
  """
  rank = sp_input.dense_shape.get_shape()[0]
  axis = -1 if axis is None else axis

  with ops.name_scope(name, default_name="expand_dims", values=[sp_input]):
    if isinstance(axis, compat.integral_types):
      axis = ops.convert_to_tensor(axis, name="axis", dtype=dtypes.int32)
    elif not isinstance(axis, ops.Tensor):
      raise TypeError("axis must be an integer value in range [-rank(sp_input)"
                      " - 1, rank(sp_input)]")

    # Convert axis to a positive value if it is negative.
    axis = array_ops.where(axis >= 0, axis, axis + rank + 1)

    # Create the new column of indices for the sparse tensor by slicing
    # the indices and inserting a new column of indices for the new dimension.
    column_size = array_ops.shape(sp_input.indices)[0]
    new_index = array_ops.zeros([column_size, 1], dtype=dtypes.int64)
    indices_before = array_ops.slice(sp_input.indices, [0, 0], [-1, axis])
    indices_after = array_ops.slice(sp_input.indices, [0, axis], [-1, -1])
    indices = array_ops.concat(
        [indices_before, new_index, indices_after], axis=1)

    # Create the new dense shape by splicing the tensor [1] in the correct
    # dimension of the existing shape.
    shape_before = array_ops.slice(sp_input.dense_shape, [0], [axis])
    shape_after = array_ops.slice(sp_input.dense_shape, [axis], [-1])
    new_shape = ops.convert_to_tensor([1], name="new_shape", dtype=dtypes.int64)
    shape = array_ops.concat([shape_before, new_shape, shape_after], axis=0)

    # Create the output sparse tensor.
    return sparse_tensor.SparseTensor(
        indices=indices, values=sp_input.values, dense_shape=shape)


@tf_export("sparse.eye")
def sparse_eye(num_rows,
               num_columns=None,
               dtype=dtypes.float32,
               name=None):
  """Creates a two-dimensional sparse tensor with ones along the diagonal.

  Args:
    num_rows: Non-negative integer or `int32` scalar `tensor` giving the number
      of rows in the resulting matrix.
    num_columns: Optional non-negative integer or `int32` scalar `tensor` giving
      the number of columns in the resulting matrix. Defaults to `num_rows`.
    dtype: The type of element in the resulting `Tensor`.
    name: A name for this `Op`. Defaults to "eye".

  Returns:
    A `SparseTensor` of shape [num_rows, num_columns] with ones along the
    diagonal.
  """
  with ops.name_scope(name, default_name="eye", values=[num_rows, num_columns]):
    num_rows = _make_int64_tensor(num_rows, "num_rows")
    num_columns = num_rows if num_columns is None else _make_int64_tensor(
        num_columns, "num_columns")

    # Create the sparse tensor.
    diag_size = math_ops.minimum(num_rows, num_columns)
    diag_range = math_ops.range(diag_size, dtype=dtypes.int64)

    return sparse_tensor.SparseTensor(
        indices=array_ops.stack([diag_range, diag_range], axis=1),
        values=array_ops.ones(diag_size, dtype=dtype),
        dense_shape=[num_rows, num_columns])


# pylint: disable=protected-access
@tf_export("sparse.concat", "sparse_concat")
@deprecation.deprecated_endpoints("sparse_concat")
@deprecation.deprecated_args(
    None, "concat_dim is deprecated, use axis instead", "concat_dim")
def sparse_concat(axis,
                  sp_inputs,
                  name=None,
                  expand_nonconcat_dim=False,
                  concat_dim=None):
  """Concatenates a list of `SparseTensor` along the specified dimension.

  Concatenation is with respect to the dense versions of each sparse input.
  It is assumed that each inputs is a `SparseTensor` whose elements are ordered
  along increasing dimension number.

  If expand_nonconcat_dim is False, all inputs' shapes must match, except for
  the concat dimension. If expand_nonconcat_dim is True, then inputs' shapes are
  allowed to vary among all inputs.

  The `indices`, `values`, and `shapes` lists must have the same length.

  If expand_nonconcat_dim is False, then the output shape is identical to the
  inputs', except along the concat dimension, where it is the sum of the inputs'
  sizes along that dimension.

  If expand_nonconcat_dim is True, then the output shape along the non-concat
  dimensions will be expand to be the largest among all inputs, and it is the
  sum of the inputs sizes along the concat dimension.

  The output elements will be resorted to preserve the sort order along
  increasing dimension number.

  This op runs in `O(M log M)` time, where `M` is the total number of non-empty
  values across all inputs. This is due to the need for an internal sort in
  order to concatenate efficiently across an arbitrary dimension.

  For example, if `axis = 1` and the inputs are

      sp_inputs[0]: shape = [2, 3]
      [0, 2]: "a"
      [1, 0]: "b"
      [1, 1]: "c"

      sp_inputs[1]: shape = [2, 4]
      [0, 1]: "d"
      [0, 2]: "e"

  then the output will be

      shape = [2, 7]
      [0, 2]: "a"
      [0, 4]: "d"
      [0, 5]: "e"
      [1, 0]: "b"
      [1, 1]: "c"

  Graphically this is equivalent to doing

      [    a] concat [  d e  ] = [    a   d e  ]
      [b c  ]        [       ]   [b c          ]

  Another example, if 'axis = 1' and the inputs are

      sp_inputs[0]: shape = [3, 3]
      [0, 2]: "a"
      [1, 0]: "b"
      [2, 1]: "c"

      sp_inputs[1]: shape = [2, 4]
      [0, 1]: "d"
      [0, 2]: "e"

  if expand_nonconcat_dim = False, this will result in an error. But if
  expand_nonconcat_dim = True, this will result in:

      shape = [3, 7]
      [0, 2]: "a"
      [0, 4]: "d"
      [0, 5]: "e"
      [1, 0]: "b"
      [2, 1]: "c"

  Graphically this is equivalent to doing

      [    a] concat [  d e  ] = [    a   d e  ]
      [b    ]        [       ]   [b            ]
      [  c  ]                    [  c          ]


  Args:
    axis: Dimension to concatenate along. Must be in range [-rank, rank),
      where rank is the number of dimensions in each input `SparseTensor`.
    sp_inputs: List of `SparseTensor` to concatenate.
    name: A name prefix for the returned tensors (optional).
    expand_nonconcat_dim: Whether to allow the expansion in the non-concat
      dimensions. Defaulted to False.
    concat_dim: The old (deprecated) name for axis.

  Returns:
    A `SparseTensor` with the concatenated output.

  Raises:
    TypeError: If `sp_inputs` is not a list of `SparseTensor`.
  """
  axis = deprecation.deprecated_argument_lookup("axis", axis, "concat_dim",
                                                concat_dim)
  sp_inputs = _convert_to_sparse_tensors(sp_inputs)

  if len(sp_inputs) == 1:  # Degenerate case of one tensor.
    return sp_inputs[0]

  inds = [sp_input.indices for sp_input in sp_inputs]
  vals = [sp_input.values for sp_input in sp_inputs]
  shapes = [sp_input.dense_shape for sp_input in sp_inputs]

  if expand_nonconcat_dim:
    max_shape = math_ops.reduce_max(
        array_ops.concat(
            [array_ops.reshape(shape, [1, -1]) for shape in shapes], 0), 0)
    shapes = [
        array_ops.concat([
            max_shape[:axis], shape[-1:]
            if axis == -1 else shape[axis:axis + 1], []
            if axis == -1 else max_shape[axis + 1:]
        ], 0) for shape in shapes
    ]

  output_ind, output_val, output_shape = (
      gen_sparse_ops.sparse_concat(inds, vals, shapes, axis, name=name))

  return sparse_tensor.SparseTensor(output_ind, output_val, output_shape)


@tf_export("sparse.add", "sparse_add")
@deprecation.deprecated_endpoints("sparse_add")
def sparse_add(a, b, thresh=0):
  """Adds two tensors, at least one of each is a `SparseTensor`.

  If one `SparseTensor` and one `Tensor` are passed in, returns a `Tensor`.  If
  both arguments are `SparseTensor`s, this returns a `SparseTensor`.  The order
  of arguments does not matter.  Use vanilla `tf.add()` for adding two dense
  `Tensor`s.

  The shapes of the two operands must match: broadcasting is not supported.

  The indices of any input `SparseTensor` are assumed ordered in standard
  lexicographic order.  If this is not the case, before this step run
  `SparseReorder` to restore index ordering.

  If both arguments are sparse, we perform "clipping" as follows.  By default,
  if two values sum to zero at some index, the output `SparseTensor` would still
  include that particular location in its index, storing a zero in the
  corresponding value slot.  To override this, callers can specify `thresh`,
  indicating that if the sum has a magnitude strictly smaller than `thresh`, its
  corresponding value and index would then not be included.  In particular,
  `thresh == 0.0` (default) means everything is kept and actual thresholding
  happens only for a positive value.

  For example, suppose the logical sum of two sparse operands is (densified):

      [       2]
      [.1     0]
      [ 6   -.2]

  Then,

      * `thresh == 0` (the default): all 5 index/value pairs will be returned.
      * `thresh == 0.11`: only .1 and 0 will vanish, and the remaining three
          index/value pairs will be returned.
      * `thresh == 0.21`: .1, 0, and -.2 will vanish.

  Args:
    a: The first operand; `SparseTensor` or `Tensor`.
    b: The second operand; `SparseTensor` or `Tensor`.  At least one operand
      must be sparse.
    thresh: A 0-D `Tensor`.  The magnitude threshold that determines if an
    output value/index pair takes space.  Its dtype should match that of the
    values if they are real; if the latter are complex64/complex128, then the
    dtype should be float32/float64, correspondingly.

  Returns:
    A `SparseTensor` or a `Tensor`, representing the sum.

  Raises:
    TypeError: If both `a` and `b` are `Tensor`s.  Use `tf.add()` instead.
  """
  sparse_classes = (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)
  if not any(isinstance(inp, sparse_classes) for inp in [a, b]):
    raise TypeError("At least one input should be SparseTensor; do you mean to"
                    " use tf.add()?")

  if all(isinstance(inp, sparse_classes) for inp in [a, b]):
    a = _convert_to_sparse_tensor(a)
    b = _convert_to_sparse_tensor(b)
    thresh = ops.convert_to_tensor(
        thresh, dtype=a.values.dtype.real_dtype.base_dtype, name="thresh")
    output_ind, output_val, output_shape = (
        gen_sparse_ops.sparse_add(a.indices, a.values, a.dense_shape,
                                  b.indices, b.values, b.dense_shape, thresh))

    # Attempt to get output_shape statically.
    a.get_shape().assert_is_compatible_with(b.get_shape())
    static_shape = array_ops.broadcast_static_shape(a.get_shape(),
                                                    b.get_shape())
    if static_shape.is_fully_defined():
      output_shape = static_shape.as_list()

    return sparse_tensor.SparseTensor(output_ind, output_val, output_shape)
  else:
    # swap to make `a` the SparseTensor.
    if isinstance(b, sparse_classes):
      a, b = b, a
    return gen_sparse_ops.sparse_tensor_dense_add(a.indices, a.values,
                                                  a.dense_shape, b)


@tf_export("sparse.cross")
def sparse_cross(inputs, name=None):
  """Generates sparse cross from a list of sparse and dense tensors.

  For example, if the inputs are
  * inputs[0]: SparseTensor with shape = [2, 2]
    [0, 0]: "a"
    [1, 0]: "b"
    [1, 1]: "c"
  * inputs[1]: SparseTensor with shape = [2, 1]
    [0, 0]: "d"
    [1, 0]: "e"
  * inputs[2]: Tensor [["f"], ["g"]]

  then the output will be:
    shape = [2, 2]
    [0, 0]: "a_X_d_X_f"
    [1, 0]: "b_X_e_X_g"
    [1, 1]: "c_X_e_X_g"

  Args:
    inputs: An iterable of `Tensor` or `SparseTensor`.
    name: Optional name for the op.

  Returns:
    A `SparseTensor` of type `string`.
  """
  return _sparse_cross_internal(inputs=inputs, hashed_output=False, name=name)


_sparse_cross = sparse_cross


@tf_export("sparse.cross_hashed")
def sparse_cross_hashed(inputs, num_buckets=0, hash_key=None, name=None):
  """Generates hashed sparse cross from a list of sparse and dense tensors.

  For example, if the inputs are
  * inputs[0]: SparseTensor with shape = [2, 2]
    [0, 0]: "a"
    [1, 0]: "b"
    [1, 1]: "c"
  * inputs[1]: SparseTensor with shape = [2, 1]
    [0, 0]: "d"
    [1, 0]: "e"
  * inputs[2]: Tensor [["f"], ["g"]]

  then the output will be:
    shape = [2, 2]
    [0, 0]: FingerprintCat64(
                Fingerprint64("f"), FingerprintCat64(
                    Fingerprint64("d"), Fingerprint64("a")))
    [1, 0]: FingerprintCat64(
                Fingerprint64("g"), FingerprintCat64(
                    Fingerprint64("e"), Fingerprint64("b")))
    [1, 1]: FingerprintCat64(
                Fingerprint64("g"), FingerprintCat64(
                    Fingerprint64("e"), Fingerprint64("c")))

  Args:
    inputs: An iterable of `Tensor` or `SparseTensor`.
    num_buckets: An `int` that is `>= 0`.
      output = hashed_value%num_buckets if num_buckets > 0 else hashed_value.
    hash_key: Integer hash_key that will be used by the `FingerprintCat64`
      function. If not given, will use a default key.
    name: Optional name for the op.

  Returns:
    A `SparseTensor` of type `int64`.
  """
  return _sparse_cross_internal(
      inputs=inputs,
      hashed_output=True,
      num_buckets=num_buckets,
      hash_key=hash_key,
      name=name)


_sparse_cross_hashed = sparse_cross_hashed

_DEFAULT_HASH_KEY = 0xDECAFCAFFE


def _sparse_cross_internal(inputs,
                           hashed_output=False,
                           num_buckets=0,
                           hash_key=None,
                           name=None):
  """See gen_sparse_ops.sparse_cross."""
  if not isinstance(inputs, list):
    raise TypeError("Inputs must be a list")
  if not all(
      isinstance(i, sparse_tensor.SparseTensor) or isinstance(i, ops.Tensor)
      for i in inputs):
    raise TypeError("All inputs must be SparseTensors")

  sparse_inputs = [
      i for i in inputs if isinstance(i, sparse_tensor.SparseTensor)
  ]
  dense_inputs = [
      i for i in inputs if not isinstance(i, sparse_tensor.SparseTensor)
  ]

  indices = [sp_input.indices for sp_input in sparse_inputs]
  values = [sp_input.values for sp_input in sparse_inputs]
  shapes = [sp_input.dense_shape for sp_input in sparse_inputs]
  out_type = dtypes.int64 if hashed_output else dtypes.string

  internal_type = dtypes.string
  for i in range(len(values)):
    if values[i].dtype != dtypes.string:
      values[i] = math_ops.to_int64(values[i])
      internal_type = dtypes.int64
  for i in range(len(dense_inputs)):
    if dense_inputs[i].dtype != dtypes.string:
      dense_inputs[i] = math_ops.to_int64(dense_inputs[i])
      internal_type = dtypes.int64

  indices_out, values_out, shape_out = gen_sparse_ops.sparse_cross(
      indices=indices,
      values=values,
      shapes=shapes,
      dense_inputs=dense_inputs,
      hashed_output=hashed_output,
      num_buckets=num_buckets,
      hash_key=hash_key or _DEFAULT_HASH_KEY,
      out_type=out_type,
      internal_type=internal_type,
      name=name)

  return sparse_tensor.SparseTensor(indices_out, values_out, shape_out)


def sparse_dense_cwise_add(sp_t, dense_t):
  """Adds up a SparseTensor and a dense Tensor, using these special rules:

  (1) Broadcasts the dense side to have the same shape as the sparse side, if
      eligible;
  (2) Then, only the dense values pointed to by the indices of the SparseTensor
      participate in the cwise addition.

  By the rules, the result is a logical SparseTensor with exactly the same
  indices and shape, but possibly with different non-zero values.  The output of
  this Op is the resultant non-zero values.

  Args:
    sp_t: the SparseTensor operand.
    dense_t: the dense Tensor operand; must have the same dtype and a
      broadcast-compatible shape as `sp_t`.

  Returns:
    output: the SparseTensor output.
  """
  result = gen_sparse_ops.sparse_dense_cwise_add(sp_t.indices, sp_t.values,
                                                 sp_t.dense_shape, dense_t)
  return sparse_tensor.SparseTensor(sp_t.indices, result, sp_t.dense_shape)


@tf_export("sparse.reorder", "sparse_reorder")
@deprecation.deprecated_endpoints("sparse_reorder")
def sparse_reorder(sp_input, name=None):
  """Reorders a `SparseTensor` into the canonical, row-major ordering.

  Note that by convention, all sparse ops preserve the canonical ordering
  along increasing dimension number. The only time ordering can be violated
  is during manual manipulation of the indices and values to add entries.

  Reordering does not affect the shape of the `SparseTensor`.

  For example, if `sp_input` has shape `[4, 5]` and `indices` / `values`:

      [0, 3]: b
      [0, 1]: a
      [3, 1]: d
      [2, 0]: c

  then the output will be a `SparseTensor` of shape `[4, 5]` and
  `indices` / `values`:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c
      [3, 1]: d

  Args:
    sp_input: The input `SparseTensor`.
    name: A name prefix for the returned tensors (optional)

  Returns:
    A `SparseTensor` with the same shape and non-empty values, but in
    canonical ordering.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  reordered_ind, reordered_val = (
      gen_sparse_ops.sparse_reorder(
          sp_input.indices, sp_input.values, sp_input.dense_shape, name=name))

  if sp_input.get_shape().is_fully_defined():
    dense_shape = sp_input.get_shape().as_list()
  else:
    dense_shape = array_ops.identity(sp_input.dense_shape)

  return sparse_tensor.SparseTensor(reordered_ind, reordered_val, dense_shape)


@tf_export("sparse.reshape", "sparse_reshape")
@deprecation.deprecated_endpoints("sparse_reshape")
def sparse_reshape(sp_input, shape, name=None):
  """Reshapes a `SparseTensor` to represent values in a new dense shape.

  This operation has the same semantics as `reshape` on the represented dense
  tensor.  The indices of non-empty values in `sp_input` are recomputed based
  on the new dense shape, and a new `SparseTensor` is returned containing the
  new indices and new shape.  The order of non-empty values in `sp_input` is
  unchanged.

  If one component of `shape` is the special value -1, the size of that
  dimension is computed so that the total dense size remains constant.  At
  most one component of `shape` can be -1.  The number of dense elements
  implied by `shape` must be the same as the number of dense elements
  originally represented by `sp_input`.

  For example, if `sp_input` has shape `[2, 3, 6]` and `indices` / `values`:

      [0, 0, 0]: a
      [0, 0, 1]: b
      [0, 1, 0]: c
      [1, 0, 0]: d
      [1, 2, 3]: e

  and `shape` is `[9, -1]`, then the output will be a `SparseTensor` of
  shape `[9, 4]` and `indices` / `values`:

      [0, 0]: a
      [0, 1]: b
      [1, 2]: c
      [4, 2]: d
      [8, 1]: e

  Args:
    sp_input: The input `SparseTensor`.
    shape: A 1-D (vector) int64 `Tensor` specifying the new dense shape of the
      represented `SparseTensor`.
    name: A name prefix for the returned tensors (optional)

  Returns:
    A `SparseTensor` with the same non-empty values but with indices calculated
    by the new dense shape.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
    ValueError:  If argument `shape` requests a `SparseTensor` with a different
      number of elements than `sp_input`.
    ValueError:  If `shape` has more than one inferred (== -1) dimension.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)
  shape = math_ops.cast(shape, dtype=dtypes.int64)

  with ops.name_scope(name, "SparseReshape", [sp_input]) as name:
    reshaped_ind, reshaped_shape = gen_sparse_ops.sparse_reshape(
        sp_input.indices, sp_input.dense_shape, shape, name=name)

    reshaped_shape_const = tensor_util.constant_value(shape)
    if (reshaped_shape_const is not None and
        sp_input.get_shape().is_fully_defined()):
      num_implied = sum((dim == -1) for dim in reshaped_shape_const)
      if num_implied > 1:
        raise ValueError("At most one dimension can be inferred (-1). Found: %s"
                         % reshaped_shape_const)
      original_reshaped_shape = list(reshaped_shape_const)  # Copy.
      in_shape_size = np.prod(sp_input.get_shape().as_list())
      if num_implied:
        implied_idx = original_reshaped_shape.index(-1)
        non_implied_idx = (
            original_reshaped_shape[:implied_idx] +
            original_reshaped_shape[implied_idx + 1:])
        reshaped_shape_const[implied_idx] = (
            in_shape_size // np.prod(non_implied_idx))
      reshaped_size = np.prod(reshaped_shape_const)
      if reshaped_size != in_shape_size:
        raise ValueError("Cannot reshape a tensor with %d elements to shape %s "
                         "(%d elements)." %
                         (in_shape_size, original_reshaped_shape,
                          reshaped_size))
      reshaped_shape = reshaped_shape_const

    return sparse_tensor.SparseTensor(reshaped_ind,
                                      array_ops.identity(sp_input.values),
                                      reshaped_shape)


# TODO(aselle): Remove keyword required once for 1.0 final
class KeywordRequired(object):

  def __repr__(self):
    # This is needed to make documentation without fully qualified module paths
    return "KeywordRequired()"


@tf_export("sparse.split", "sparse_split")
@deprecation.deprecated_endpoints("sparse_split")
@deprecation.deprecated_args(
    None, "split_dim is deprecated, use axis instead", "split_dim")
def sparse_split(keyword_required=KeywordRequired(),
                 sp_input=None,
                 num_split=None,
                 axis=None,
                 name=None,
                 split_dim=None):
  """Split a `SparseTensor` into `num_split` tensors along `axis`.

  If the `sp_input.dense_shape[axis]` is not an integer multiple of `num_split`
  each slice starting from 0:`shape[axis] % num_split` gets extra one
  dimension. For example, if `axis = 1` and `num_split = 2` and the
  input is:

      input_tensor = shape = [2, 7]
      [    a   d e  ]
      [b c          ]

  Graphically the output tensors are:

      output_tensor[0] =
      [    a ]
      [b c   ]

      output_tensor[1] =
      [ d e  ]
      [      ]

  Args:
    keyword_required: Python 2 standin for * (temporary for argument reorder)
    sp_input: The `SparseTensor` to split.
    num_split: A Python integer. The number of ways to split.
    axis: A 0-D `int32` `Tensor`. The dimension along which to split.
    name: A name for the operation (optional).
    split_dim: Deprecated old name for axis.

  Returns:
    `num_split` `SparseTensor` objects resulting from splitting `value`.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
    ValueError: If the deprecated `split_dim` and `axis` are both non None.
  """
  if not isinstance(keyword_required, KeywordRequired):
    raise ValueError("Keyword arguments are required for this function.")
  if sp_input is None:
    raise ValueError("sp_input is required")
  if num_split is None:
    raise ValueError("num_split is required")
  if axis is None:
    raise ValueError("axis is required")
  axis = deprecation.deprecated_argument_lookup("axis", axis, "split_dim",
                                                split_dim)
  sp_input = _convert_to_sparse_tensor(sp_input)

  output_inds, output_vals, output_shapes = (
      gen_sparse_ops.sparse_split(
          axis,
          sp_input.indices,
          sp_input.values,
          sp_input.dense_shape,
          num_split,
          name=name))
  sparse_tensors = []
  for i in range(0, num_split):
    sparse_tensors.append(
        sparse_tensor.SparseTensor(output_inds[i], output_vals[i],
                                   output_shapes[i]))
  return sparse_tensors


@tf_export("sparse.slice", "sparse_slice")
@deprecation.deprecated_endpoints("sparse_slice")
def sparse_slice(sp_input, start, size, name=None):
  """Slice a `SparseTensor` based on the `start` and `size.

  For example, if the input is

      input_tensor = shape = [2, 7]
      [    a   d e  ]
      [b c          ]

  Graphically the output tensors are:

      sparse.slice([0, 0], [2, 4]) = shape = [2, 4]
      [    a  ]
      [b c    ]

      sparse.slice([0, 4], [2, 3]) = shape = [2, 3]
      [ d e  ]
      [      ]

  Args:
    sp_input: The `SparseTensor` to split.
    start: 1-D. tensor represents the start of the slice.
    size: 1-D. tensor represents the size of the slice.
    name: A name for the operation (optional).

  Returns:
    A `SparseTensor` objects resulting from splicing.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)
  start = ops.convert_to_tensor(start, dtypes.int64)
  size = ops.convert_to_tensor(size, dtypes.int64)

  with ops.name_scope(name, "SparseSlice", [sp_input]) as name:
    output_indices, output_values, output_shape = gen_sparse_ops.sparse_slice(
        sp_input.indices,
        sp_input.values,
        sp_input.dense_shape,
        start,
        size,
        name=name)

    return sparse_tensor.SparseTensor(output_indices, output_values,
                                      output_shape)


@tf_export("sparse_to_dense")
@deprecation.deprecated(
    None,
    "Create a `tf.sparse.SparseTensor` and use `tf.sparse.to_dense` instead.")
def sparse_to_dense(sparse_indices,
                    output_shape,
                    sparse_values,
                    default_value=0,
                    validate_indices=True,
                    name=None):
  """Converts a sparse representation into a dense tensor.

  Builds an array `dense` with shape `output_shape` such that

  ```python
  # If sparse_indices is scalar
  dense[i] = (i == sparse_indices ? sparse_values : default_value)

  # If sparse_indices is a vector, then for each i
  dense[sparse_indices[i]] = sparse_values[i]

  # If sparse_indices is an n by d matrix, then for each i in [0, n)
  dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
  ```

  All other values in `dense` are set to `default_value`.  If `sparse_values`
  is a scalar, all sparse indices are set to this single value.

  Indices should be sorted in lexicographic order, and indices must not
  contain any repeats. If `validate_indices` is True, these properties
  are checked during execution.

  Args:
    sparse_indices: A 0-D, 1-D, or 2-D `Tensor` of type `int32` or `int64`.
      `sparse_indices[i]` contains the complete index where `sparse_values[i]`
      will be placed.
    output_shape: A 1-D `Tensor` of the same type as `sparse_indices`.  Shape
      of the dense output tensor.
    sparse_values: A 0-D or 1-D `Tensor`.  Values corresponding to each row of
      `sparse_indices`, or a scalar value to be used for all sparse indices.
    default_value: A 0-D `Tensor` of the same type as `sparse_values`.  Value
      to set for indices not specified in `sparse_indices`.  Defaults to zero.
    validate_indices: A boolean value.  If True, indices are checked to make
      sure they are sorted in lexicographic order and that there are no repeats.
    name: A name for the operation (optional).

  Returns:
    Dense `Tensor` of shape `output_shape`.  Has the same type as
    `sparse_values`.
  """
  return gen_sparse_ops.sparse_to_dense(
      sparse_indices,
      output_shape,
      sparse_values,
      default_value=default_value,
      validate_indices=validate_indices,
      name=name)


@tf_export("sparse.reduce_max", "sparse_reduce_max")
@deprecation.deprecated_endpoints("sparse_reduce_max")
@deprecation.deprecated_args(
    None, "keep_dims is deprecated, use keepdims instead", "keep_dims")
def sparse_reduce_max(sp_input, axis=None, keepdims=None,
                      reduction_axes=None, keep_dims=None):
  """Computes the max of elements across dimensions of a SparseTensor.

  This Op takes a SparseTensor and is the sparse counterpart to
  `tf.reduce_max()`.  In particular, this Op also returns a dense `Tensor`
  instead of a sparse one.

  Note: A gradient is not defined for this function, so it can't be used
  in training models that need gradient descent.

  Reduces `sp_input` along the dimensions given in `reduction_axes`.  Unless
  `keepdims` is true, the rank of the tensor is reduced by 1 for each entry in
  `reduction_axes`. If `keepdims` is true, the reduced dimensions are retained
  with length 1.

  If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
  with a single element is returned.  Additionally, the axes can be negative,
  similar to the indexing rules in Python.

  The values not defined in `sp_input` don't participate in the reduce max,
  as opposed to be implicitly assumed 0 -- hence it can return negative values
  for sparse `reduction_axes`. But, in case there are no values in
  `reduction_axes`, it will reduce to 0. See second example below.

  For example:

  ```python
  # 'x' represents [[1, ?, 2]
  #                 [?, 3, ?]]
  # where ? is implicitly-zero.
  tf.sparse.reduce_max(x) ==> 3
  tf.sparse.reduce_max(x, 0) ==> [1, 3, 2]
  tf.sparse.reduce_max(x, 1) ==> [2, 3]  # Can also use -1 as the axis.
  tf.sparse.reduce_max(x, 1, keepdims=True) ==> [[2], [3]]
  tf.sparse.reduce_max(x, [0, 1]) ==> 3

  # 'y' represents [[-7, ?]
  #                 [ 4, 3]
  #                 [ ?, ?]
  tf.sparse.reduce_max(x, 1) ==> [-7, 4, 0]
  ```

  Args:
    sp_input: The SparseTensor to reduce. Should have numeric type.
    axis: The dimensions to reduce; list or scalar. If `None` (the
      default), reduces all dimensions.
    keepdims: If true, retain reduced dimensions with length 1.
    reduction_axes: Deprecated name of axis.
    keep_dims:  Deprecated alias for `keepdims`.

  Returns:
    The reduced Tensor.
  """
  keepdims = deprecation.deprecated_argument_lookup("keepdims", keepdims,
                                                    "keep_dims", keep_dims)
  if keepdims is None:
    keepdims = False

  return gen_sparse_ops.sparse_reduce_max(
      sp_input.indices, sp_input.values, sp_input.dense_shape,
      math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims)


@tf_export("sparse.reduce_max_sparse", "sparse_reduce_max_sparse")
@deprecation.deprecated_endpoints("sparse_reduce_max_sparse")
@deprecation.deprecated_args(
    None, "keep_dims is deprecated, use keepdims instead", "keep_dims")
def sparse_reduce_max_sparse(sp_input,
                             axis=None,
                             keepdims=None,
                             reduction_axes=None,
                             keep_dims=None):
  """Computes the max of elements across dimensions of a SparseTensor.

  This Op takes a SparseTensor and is the sparse counterpart to
  `tf.reduce_max()`.  In contrast to SparseReduceSum, this Op returns a
  SparseTensor.

  Note: A gradient is not defined for this function, so it can't be used
  in training models that need gradient descent.

  Reduces `sp_input` along the dimensions given in `reduction_axes`.  Unless
  `keepdims` is true, the rank of the tensor is reduced by 1 for each entry in
  `reduction_axes`. If `keepdims` is true, the reduced dimensions are retained
  with length 1.

  If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
  with a single element is returned.  Additionally, the axes can be negative,
  which are interpreted according to the indexing rules in Python.

  Args:
    sp_input: The SparseTensor to reduce. Should have numeric type.
    axis: The dimensions to reduce; list or scalar. If `None` (the
      default), reduces all dimensions.
    keepdims: If true, retain reduced dimensions with length 1.
    reduction_axes: Deprecated name of axis.
    keep_dims: Deprecated alias for `keepdims`.

  Returns:
    The reduced SparseTensor.
  """
  keepdims = deprecation.deprecated_argument_lookup("keepdims", keepdims,
                                                    "keep_dims", keep_dims)
  if keepdims is None:
    keepdims = False

  output_ind, output_val, output_shape = (
      gen_sparse_ops.sparse_reduce_max_sparse(
          sp_input.indices, sp_input.values, sp_input.dense_shape,
          math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims))

  return sparse_tensor.SparseTensor(output_ind, output_val, output_shape)


@tf_export("sparse.reduce_sum", "sparse_reduce_sum")
@deprecation.deprecated_endpoints("sparse_reduce_sum")
@deprecation.deprecated_args(
    None, "keep_dims is deprecated, use keepdims instead", "keep_dims")
def sparse_reduce_sum(sp_input, axis=None, keepdims=None,
                      reduction_axes=None, keep_dims=None):
  """Computes the sum of elements across dimensions of a SparseTensor.

  This Op takes a SparseTensor and is the sparse counterpart to
  `tf.reduce_sum()`.  In particular, this Op also returns a dense `Tensor`
  instead of a sparse one.

  Reduces `sp_input` along the dimensions given in `reduction_axes`.  Unless
  `keepdims` is true, the rank of the tensor is reduced by 1 for each entry in
  `reduction_axes`. If `keepdims` is true, the reduced dimensions are retained
  with length 1.

  If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
  with a single element is returned.  Additionally, the axes can be negative,
  similar to the indexing rules in Python.

  For example:

  ```python
  # 'x' represents [[1, ?, 1]
  #                 [?, 1, ?]]
  # where ? is implicitly-zero.
  tf.sparse.reduce_sum(x) ==> 3
  tf.sparse.reduce_sum(x, 0) ==> [1, 1, 1]
  tf.sparse.reduce_sum(x, 1) ==> [2, 1]  # Can also use -1 as the axis.
  tf.sparse.reduce_sum(x, 1, keepdims=True) ==> [[2], [1]]
  tf.sparse.reduce_sum(x, [0, 1]) ==> 3
  ```

  Args:
    sp_input: The SparseTensor to reduce. Should have numeric type.
    axis: The dimensions to reduce; list or scalar. If `None` (the
      default), reduces all dimensions.
    keepdims: If true, retain reduced dimensions with length 1.
    reduction_axes: Deprecated name of axis.
    keep_dims: Deprecated alias for `keepdims`.

  Returns:
    The reduced Tensor.
  """
  keepdims = deprecation.deprecated_argument_lookup("keepdims", keepdims,
                                                    "keep_dims", keep_dims)
  if keepdims is None:
    keepdims = False

  return gen_sparse_ops.sparse_reduce_sum(
      sp_input.indices, sp_input.values, sp_input.dense_shape,
      math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims)


@tf_export("sparse.reduce_sum_sparse", "sparse_reduce_sum_sparse")
@deprecation.deprecated_endpoints("sparse_reduce_sum_sparse")
@deprecation.deprecated_args(
    None, "keep_dims is deprecated, use keepdims instead", "keep_dims")
def sparse_reduce_sum_sparse(sp_input,
                             axis=None,
                             keepdims=None,
                             reduction_axes=None,
                             keep_dims=None):
  """Computes the sum of elements across dimensions of a SparseTensor.

  This Op takes a SparseTensor and is the sparse counterpart to
  `tf.reduce_sum()`.  In contrast to SparseReduceSum, this Op returns a
  SparseTensor.

  Note: A gradient is not defined for this function, so it can't be used
  in training models that need gradient descent.

  Reduces `sp_input` along the dimensions given in `reduction_axes`.  Unless
  `keepdims` is true, the rank of the tensor is reduced by 1 for each entry in
  `reduction_axes`. If `keepdims` is true, the reduced dimensions are retained
  with length 1.

  If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
  with a single element is returned.  Additionally, the axes can be negative,
  which are interpreted according to the indexing rules in Python.

  Args:
    sp_input: The SparseTensor to reduce. Should have numeric type.
    axis: The dimensions to reduce; list or scalar. If `None` (the
      default), reduces all dimensions.
    keepdims: If true, retain reduced dimensions with length 1.
    reduction_axes: Deprecated name of axis.
    keep_dims: Deprecated alias for `keepdims`.

  Returns:
    The reduced SparseTensor.
  """
  keepdims = deprecation.deprecated_argument_lookup("keepdims", keepdims,
                                                    "keep_dims", keep_dims)
  if keepdims is None:
    keepdims = False

  output_ind, output_val, output_shape = (
      gen_sparse_ops.sparse_reduce_sum_sparse(
          sp_input.indices, sp_input.values, sp_input.dense_shape,
          math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims))

  return sparse_tensor.SparseTensor(output_ind, output_val, output_shape)


@tf_export("sparse.to_dense", "sparse_tensor_to_dense")
@deprecation.deprecated_endpoints("sparse_tensor_to_dense")
def sparse_tensor_to_dense(sp_input,
                           default_value=0,
                           validate_indices=True,
                           name=None):
  """Converts a `SparseTensor` into a dense tensor.

  This op is a convenience wrapper around `sparse_to_dense` for `SparseTensor`s.

  For example, if `sp_input` has shape `[3, 5]` and non-empty string values:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c

  and `default_value` is `x`, then the output will be a dense `[3, 5]`
  string tensor with values:

      [[x a x b x]
       [x x x x x]
       [c x x x x]]

  Indices must be without repeats.  This is only
  tested if validate_indices is True.

  Args:
    sp_input: The input `SparseTensor`.
    default_value: Scalar value to set for indices not specified in
      `sp_input`.  Defaults to zero.
    validate_indices: A boolean value.  If `True`, indices are checked to make
      sure they are sorted in lexicographic order and that there are no repeats.
    name: A name prefix for the returned tensors (optional).

  Returns:
    A dense tensor with shape `sp_input.dense_shape` and values specified by
    the non-empty values in `sp_input`. Indices not in `sp_input` are assigned
    `default_value`.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  return sparse_to_dense(
      sp_input.indices,
      sp_input.dense_shape,
      sp_input.values,
      default_value=default_value,
      validate_indices=validate_indices,
      name=name)


@tf_export("sparse.to_indicator", "sparse_to_indicator")
@deprecation.deprecated_endpoints("sparse_to_indicator")
def sparse_to_indicator(sp_input, vocab_size, name=None):
  """Converts a `SparseTensor` of ids into a dense bool indicator tensor.

  The last dimension of `sp_input.indices` is discarded and replaced with
  the values of `sp_input`.  If `sp_input.dense_shape = [D0, D1, ..., Dn, K]`,
  then `output.shape = [D0, D1, ..., Dn, vocab_size]`, where

      output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True

  and False elsewhere in `output`.

  For example, if `sp_input.dense_shape = [2, 3, 4]` with non-empty values:

      [0, 0, 0]: 0
      [0, 1, 0]: 10
      [1, 0, 3]: 103
      [1, 1, 2]: 150
      [1, 1, 3]: 149
      [1, 1, 4]: 150
      [1, 2, 1]: 121

  and `vocab_size = 200`, then the output will be a `[2, 3, 200]` dense bool
  tensor with False everywhere except at positions

      (0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),
      (1, 2, 121).

  Note that repeats are allowed in the input SparseTensor.
  This op is useful for converting `SparseTensor`s into dense formats for
  compatibility with ops that expect dense tensors.

  The input `SparseTensor` must be in row-major order.

  Args:
    sp_input: A `SparseTensor` with `values` property of type `int32` or
      `int64`.
    vocab_size: A scalar int64 Tensor (or Python int) containing the new size
      of the last dimension, `all(0 <= sp_input.values < vocab_size)`.
    name: A name prefix for the returned tensors (optional)

  Returns:
    A dense bool indicator tensor representing the indices with specified value.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  with ops.name_scope(name, "SparseToIndicator", [sp_input]) as name:
    num_entries = array_ops.shape(sp_input.indices)[0]
    new_values = array_ops.fill(array_ops.expand_dims(num_entries, 0), True)
    sp_values = sparse_tensor.SparseTensor(sp_input.indices, new_values,
                                           sp_input.dense_shape)

    sp_new = sparse_merge(sp_input, sp_values, vocab_size, name)

    # validate_indices may be False because we allow duplicates in new_indices:
    # repeated indices are allowed when creating an indicator matrix.
    return sparse_tensor_to_dense(
        sp_new, default_value=False, validate_indices=False, name=name)


@tf_export("sparse.merge", "sparse_merge")
@deprecation.deprecated_endpoints("sparse_merge")
def sparse_merge(sp_ids, sp_values, vocab_size, name=None,
                 already_sorted=False):
  """Combines a batch of feature ids and values into a single `SparseTensor`.

  The most common use case for this function occurs when feature ids and
  their corresponding values are stored in `Example` protos on disk.
  `parse_example` will return a batch of ids and a batch of values, and this
  function joins them into a single logical `SparseTensor` for use in
  functions such as `sparse_tensor_dense_matmul`, `sparse_to_dense`, etc.

  The `SparseTensor` returned by this function has the following properties:

    - `indices` is equivalent to `sp_ids.indices` with the last
      dimension discarded and replaced with `sp_ids.values`.
    - `values` is simply `sp_values.values`.
    - If `sp_ids.dense_shape = [D0, D1, ..., Dn, K]`, then
      `output.shape = [D0, D1, ..., Dn, vocab_size]`.

  For example, consider the following feature vectors:

  ```python
    vector1 = [-3, 0, 0, 0, 0, 0]
    vector2 = [ 0, 1, 0, 4, 1, 0]
    vector3 = [ 5, 0, 0, 9, 0, 0]
  ```

  These might be stored sparsely in the following Example protos by storing
  only the feature ids (column number if the vectors are treated as a matrix)
  of the non-zero elements and the corresponding values:

  ```python
    examples = [Example(features={
                    "ids": Feature(int64_list=Int64List(value=[0])),
                    "values": Feature(float_list=FloatList(value=[-3]))}),
                Example(features={
                    "ids": Feature(int64_list=Int64List(value=[1, 4, 3])),
                    "values": Feature(float_list=FloatList(value=[1, 1, 4]))}),
                Example(features={
                    "ids": Feature(int64_list=Int64List(value=[0, 3])),
                    "values": Feature(float_list=FloatList(value=[5, 9]))})]
  ```

  The result of calling parse_example on these examples will produce a
  dictionary with entries for "ids" and "values". Passing those two objects
  to this function along with vocab_size=6, will produce a `SparseTensor` that
  sparsely represents all three instances. Namely, the `indices` property will
  contain the coordinates of the non-zero entries in the feature matrix (the
  first dimension is the row number in the matrix, i.e., the index within the
  batch, and the second dimension is the column number, i.e., the feature id);
  `values` will contain the actual values. `shape` will be the shape of the
  original matrix, i.e., (3, 6). For our example above, the output will be
  equal to:

  ```python
    SparseTensor(indices=[[0, 0], [1, 1], [1, 3], [1, 4], [2, 0], [2, 3]],
                 values=[-3, 1, 4, 1, 5, 9],
                 dense_shape=[3, 6])
  ```

  This method generalizes to higher-dimensions by simply providing a list for
  both the sp_ids as well as the vocab_size.
  In this case the resulting `SparseTensor` has the following properties:
    - `indices` is equivalent to `sp_ids[0].indices` with the last
      dimension discarded and concatenated with
      `sp_ids[0].values, sp_ids[1].values, ...`.
    - `values` is simply `sp_values.values`.
    - If `sp_ids.dense_shape = [D0, D1, ..., Dn, K]`, then
      `output.shape = [D0, D1, ..., Dn] + vocab_size`.

  Args:
    sp_ids: A single `SparseTensor` with `values` property of type `int32`
      or `int64` or a Python list of such `SparseTensor`s or a list thereof.
    sp_values: A `SparseTensor` of any type.
    vocab_size: A scalar `int64` Tensor (or Python int) containing the new size
      of the last dimension, `all(0 <= sp_ids.values < vocab_size)`.
      Or a list thereof with `all(0 <= sp_ids[i].values < vocab_size[i])` for
      all `i`.
    name: A name prefix for the returned tensors (optional)
    already_sorted: A boolean to specify whether the per-batch values in
     `sp_values` are already sorted. If so skip sorting, False by default
     (optional).

  Returns:
    A `SparseTensor` compactly representing a batch of feature ids and values,
    useful for passing to functions that expect such a `SparseTensor`.

  Raises:
    TypeError: If `sp_values` is not a `SparseTensor`. Or if `sp_ids` is neither
      a `SparseTensor` nor a list thereof. Or if `vocab_size` is not a
      `Tensor` or a Python int and `sp_ids` is a `SparseTensor`. Or if
      `vocab_size` is not a or list thereof and `sp_ids` is a list.
    ValueError: If `sp_ids` and `vocab_size` are lists of different lengths.
  """
  if isinstance(sp_ids, sparse_tensor.SparseTensorValue) or isinstance(
      sp_ids, sparse_tensor.SparseTensor):
    sp_ids = [sp_ids]
    if not (isinstance(vocab_size, ops.Tensor) or
            isinstance(vocab_size, numbers.Integral)):
      raise TypeError("vocab_size has to be a Tensor or Python int. Found %s" %
                      type(vocab_size))
    vocab_size = [vocab_size]
  else:
    if not isinstance(sp_ids, collections.Iterable):
      raise TypeError("sp_ids has to be a SparseTensor or list thereof. "
                      "Found %s" % type(sp_ids))
    if not isinstance(vocab_size, collections.Iterable):
      raise TypeError("vocab_size has to be a list of Tensors or Python ints. "
                      "Found %s" % type(vocab_size))
    for dim in vocab_size:
      if not (isinstance(dim, ops.Tensor) or isinstance(dim, numbers.Integral)):
        raise TypeError(
            "vocab_size has to be a list of Tensors or Python ints. Found %s" %
            type(dim))
  if len(sp_ids) != len(vocab_size):
    raise ValueError("sp_ids and vocab_size have to have equal lengths.")

  with ops.name_scope(name, "SparseMerge", [sp_ids, sp_values]):
    sp_ids = [_convert_to_sparse_tensor(sp_ids_dim) for sp_ids_dim in sp_ids]
    sp_values = _convert_to_sparse_tensor(sp_values)
    ids = []
    for sp_ids_dim in sp_ids:
      ids_dim = sp_ids_dim.values
      if sp_ids_dim.dtype != dtypes.int64:
        ids_dim = math_ops.cast(ids_dim, dtypes.int64)
      ids += [array_ops.expand_dims(ids_dim, axis=1)]

    vocab_size = [math_ops.cast(x, dtypes.int64) for x in vocab_size]

    # Slice off the last dimension of indices, then tack on the ids
    indices_columns_to_preserve = sp_ids[0].indices[:, :-1]
    new_indices = array_ops.concat([indices_columns_to_preserve] + ids, 1)

    new_values = sp_values.values
    new_shape = array_ops.concat([sp_ids[0].dense_shape[:-1], vocab_size], 0)

    result = sparse_tensor.SparseTensor(new_indices, new_values, new_shape)
    if already_sorted:
      return result
    sorted_result = sparse_reorder(result)
    return sparse_tensor.SparseTensor(
        sorted_result.indices, sorted_result.values, new_shape)


@tf_export("sparse.retain", "sparse_retain")
@deprecation.deprecated_endpoints("sparse_retain")
def sparse_retain(sp_input, to_retain):
  """Retains specified non-empty values within a `SparseTensor`.

  For example, if `sp_input` has shape `[4, 5]` and 4 non-empty string values:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c
      [3, 1]: d

  and `to_retain = [True, False, False, True]`, then the output will
  be a `SparseTensor` of shape `[4, 5]` with 2 non-empty values:

      [0, 1]: a
      [3, 1]: d

  Args:
    sp_input: The input `SparseTensor` with `N` non-empty elements.
    to_retain: A bool vector of length `N` with `M` true values.

  Returns:
    A `SparseTensor` with the same shape as the input and `M` non-empty
    elements corresponding to the true positions in `to_retain`.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  to_retain = ops.convert_to_tensor(to_retain)

  # Shape checking, if shape is known at graph construction time
  retain_shape = to_retain.get_shape()
  retain_shape.assert_has_rank(1)
  sp_input.values.get_shape()[0].merge_with(retain_shape[0])

  where_true = array_ops.reshape(array_ops.where(to_retain), [-1])
  new_indices = array_ops.gather(sp_input.indices, where_true)
  new_values = array_ops.gather(sp_input.values, where_true)
  return sparse_tensor.SparseTensor(new_indices, new_values,
                                    array_ops.identity(sp_input.dense_shape))


@tf_export("sparse.reset_shape", "sparse_reset_shape")
@deprecation.deprecated_endpoints("sparse_reset_shape")
def sparse_reset_shape(sp_input, new_shape=None):
  """Resets the shape of a `SparseTensor` with indices and values unchanged.

  If `new_shape` is None, returns a copy of `sp_input` with its shape reset
  to the tight bounding box of `sp_input`. This will be a shape consisting of
  all zeros if sp_input has no values.

  If `new_shape` is provided, then it must be larger or equal in all dimensions
  compared to the shape of `sp_input`. When this condition is met, the returned
  SparseTensor will have its shape reset to `new_shape` and its indices and
  values unchanged from that of `sp_input.`

  For example:

    Consider a `sp_input` with shape [2, 3, 5]:

      [0, 0, 1]: a
      [0, 1, 0]: b
      [0, 2, 2]: c
      [1, 0, 3]: d

    - It is an error to set `new_shape` as [3, 7] since this represents a
      rank-2 tensor while `sp_input` is rank-3. This is either a ValueError
      during graph construction (if both shapes are known) or an OpError during
      run time.

    - Setting `new_shape` as [2, 3, 6] will be fine as this shape is larger or
      equal in every dimension compared to the original shape [2, 3, 5].

    - On the other hand, setting new_shape as [2, 3, 4] is also an error: The
      third dimension is smaller than the original shape [2, 3, 5] (and an
      `InvalidArgumentError` will be raised).

    - If `new_shape` is None, the returned SparseTensor will have a shape
      [2, 3, 4], which is the tight bounding box of `sp_input`.

  Args:
    sp_input: The input `SparseTensor`.
    new_shape: None or a vector representing the new shape for the returned
      `SparseTensor`.

  Returns:
    A `SparseTensor` indices and values unchanged from `input_sp`. Its shape is
      `new_shape` if that is set. Otherwise it is the tight bounding box of
       `input_sp`

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
    ValueError: If `new_shape` represents a tensor with a different rank from
      that of `sp_input` (if shapes are known when graph is constructed).
    ValueError:  If `new_shape` is determined during graph build to have
      dimension sizes that are too small.
    OpError:
      - If `new_shape` has dimension sizes that are too small.
      - If shapes are not known during graph construction time, and during run
        time it is found out that the ranks do not match.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  in_indices = array_ops.identity(sp_input.indices)
  in_values = array_ops.identity(sp_input.values)
  in_shape = array_ops.identity(sp_input.dense_shape)

  if new_shape is None:
    dim_low_bound = math_ops.reduce_max(in_indices, axis=0)
    output_shape_tensor = math_ops.maximum(
        array_ops.constant(0, dtype=dtypes.int64),
        math_ops.add(dim_low_bound, array_ops.ones_like(in_shape)))
  else:
    output_shape_tensor = ops.convert_to_tensor(new_shape)
    output_shape_tensor.get_shape().assert_has_rank(1)
    output_shape_tensor = math_ops.cast(output_shape_tensor, dtypes.int64)
    # For cases when shape is known during graph construction, this catches the
    # error before the sparse_tensor.SparseTensor catches it.
    output_shape_tensor.get_shape()[0].merge_with(in_shape.get_shape()[0])

    output_shape_tensor_const = tensor_util.constant_value(output_shape_tensor)
    # For cases where all shapes are known during graph construction
    if (output_shape_tensor_const is not None and
        sp_input.get_shape().is_fully_defined()):
      in_shape_const = np.array(sp_input.get_shape().as_list())
      if not np.all(in_shape_const <= output_shape_tensor_const):
        raise ValueError(
            "Requested new_shape should have dimension sizes >= sp_input.shape."
            "  Found new_shape (%s), sp_input.shape (%s)." %
            (in_shape_const, output_shape_tensor_const))
      output_shape_tensor = output_shape_tensor_const
    else:
      # For cases where shape is not known during graph construction.
      output_shape_tensor = control_flow_ops.with_dependencies([
          check_ops.assert_equal(
              array_ops.shape(in_shape), array_ops.shape(output_shape_tensor))
      ], output_shape_tensor)
      output_shape_tensor = control_flow_ops.with_dependencies(
          [check_ops.assert_less_equal(in_shape, output_shape_tensor)],
          output_shape_tensor)

  return sparse_tensor.SparseTensor(in_indices, in_values, output_shape_tensor)


@tf_export("sparse.fill_empty_rows", "sparse_fill_empty_rows")
@deprecation.deprecated_endpoints("sparse_fill_empty_rows")
def sparse_fill_empty_rows(sp_input, default_value, name=None):
  """Fills empty rows in the input 2-D `SparseTensor` with a default value.

  This op adds entries with the specified `default_value` at index
  `[row, 0]` for any row in the input that does not already have a value.

  For example, suppose `sp_input` has shape `[5, 6]` and non-empty values:

      [0, 1]: a
      [0, 3]: b
      [2, 0]: c
      [3, 1]: d

  Rows 1 and 4 are empty, so the output will be of shape `[5, 6]` with values:

      [0, 1]: a
      [0, 3]: b
      [1, 0]: default_value
      [2, 0]: c
      [3, 1]: d
      [4, 0]: default_value

  Note that the input may have empty columns at the end, with no effect on
  this op.

  The output `SparseTensor` will be in row-major order and will have the
  same shape as the input.

  This op also returns an indicator vector such that

      empty_row_indicator[i] = True iff row i was an empty row.

  Args:
    sp_input: A `SparseTensor` with shape `[N, M]`.
    default_value: The value to fill for empty rows, with the same type as
      `sp_input.`
    name: A name prefix for the returned tensors (optional)

  Returns:
    sp_ordered_output: A `SparseTensor` with shape `[N, M]`, and with all empty
      rows filled in with `default_value`.
    empty_row_indicator: A bool vector of length `N` indicating whether each
      input row was empty.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)
  with ops.name_scope(name, "SparseFillEmptyRows", [sp_input]):
    default_value = ops.convert_to_tensor(
        default_value, dtype=sp_input.values.dtype)
    (output_indices, output_values, empty_row_indicator,
     unused_reverse_index_map) = gen_sparse_ops.sparse_fill_empty_rows(
         indices=sp_input.indices,
         values=sp_input.values,
         dense_shape=sp_input.dense_shape,
         default_value=default_value)
    return (sparse_tensor.SparseTensor(
        indices=output_indices,
        values=output_values,
        dense_shape=sp_input.dense_shape), empty_row_indicator)


@tf_export("io.serialize_sparse", "serialize_sparse")
@deprecation.deprecated_endpoints("serialize_sparse")
def serialize_sparse(sp_input, name=None, out_type=dtypes.string):
  """Serialize a `SparseTensor` into a 3-vector (1-D `Tensor`) object.

  Args:
    sp_input: The input `SparseTensor`.
    name: A name prefix for the returned tensors (optional).
    out_type: The `dtype` to use for serialization.

  Returns:
    A 3-vector (1-D `Tensor`), with each column representing the serialized
    `SparseTensor`'s indices, values, and shape (respectively).

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  return gen_sparse_ops.serialize_sparse(
      sp_input.indices,
      sp_input.values,
      sp_input.dense_shape,
      name=name,
      out_type=out_type)


@tf_export("io.serialize_many_sparse", "serialize_many_sparse")
@deprecation.deprecated_endpoints("serialize_many_sparse")
def serialize_many_sparse(sp_input, name=None, out_type=dtypes.string):
  """Serialize `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor`.

  The `SparseTensor` must have rank `R` greater than 1, and the first dimension
  is treated as the minibatch dimension.  Elements of the `SparseTensor`
  must be sorted in increasing order of this first dimension.  The serialized
  `SparseTensor` objects going into each row of the output `Tensor` will have
  rank `R-1`.

  The minibatch size `N` is extracted from `sparse_shape[0]`.

  Args:
    sp_input: The input rank `R` `SparseTensor`.
    name: A name prefix for the returned tensors (optional).
    out_type: The `dtype` to use for serialization.

  Returns:
    A matrix (2-D `Tensor`) with `N` rows and `3` columns. Each column
    represents serialized `SparseTensor`'s indices, values, and shape
    (respectively).

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  return gen_sparse_ops.serialize_many_sparse(
      sp_input.indices,
      sp_input.values,
      sp_input.dense_shape,
      name=name,
      out_type=out_type)


def deserialize_sparse(serialized_sparse, dtype, rank=None, name=None):
  """Deserialize `SparseTensor` objects.

  The input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where
  the last dimension stores serialized `SparseTensor` objects and the other N
  dimensions (N >= 0) correspond to a batch. The ranks of the original
  `SparseTensor` objects must all match. When the final `SparseTensor` is
  created, its rank is the rank of the incoming `SparseTensor` objects plus N;
  the sparse tensors have been concatenated along new dimensions, one for each
  batch.

  The output `SparseTensor` object's shape values for the original dimensions
  are the max across the input `SparseTensor` objects' shape values for the
  corresponding dimensions. The new dimensions match the size of the batch.

  The input `SparseTensor` objects' indices are assumed ordered in
  standard lexicographic order.  If this is not the case, after this
  step run `SparseReorder` to restore index ordering.

  For example, if the serialized input is a `[2 x 3]` matrix representing two
  original `SparseTensor` objects:

      index = [ 0]
              [10]
              [20]
      values = [1, 2, 3]
      shape = [50]

  and

      index = [ 2]
              [10]
      values = [4, 5]
      shape = [30]

  then the final deserialized `SparseTensor` will be:

      index = [0  0]
              [0 10]
              [0 20]
              [1  2]
              [1 10]
      values = [1, 2, 3, 4, 5]
      shape = [2 50]

  Args:
    serialized_sparse: The serialized `SparseTensor` objects.
      The last dimension must have 3 columns.
    dtype: The `dtype` of the serialized `SparseTensor` objects.
    rank: (optional) Python int, the rank of the `SparseTensor` objects.
    name: A name prefix for the returned tensors (optional).

  Returns:
    A `SparseTensor` representing the deserialized `SparseTensor` objects.

  """
  output_indices, output_values, output_shape = (
      gen_sparse_ops.deserialize_sparse(serialized_sparse, dtype, name=name))

  # Feed rank data back in, if available
  output_indices.set_shape([None, rank])
  output_shape.set_shape([rank])

  return sparse_tensor.SparseTensor(output_indices, output_values, output_shape)


@tf_export("io.deserialize_many_sparse", "deserialize_many_sparse")
@deprecation.deprecated_endpoints("deserialize_many_sparse")
def deserialize_many_sparse(serialized_sparse, dtype, rank=None, name=None):
  """Deserialize and concatenate `SparseTensors` from a serialized minibatch.

  The input `serialized_sparse` must be a string matrix of shape `[N x 3]` where
  `N` is the minibatch size and the rows correspond to packed outputs of
  `serialize_sparse`.  The ranks of the original `SparseTensor` objects
  must all match.  When the final `SparseTensor` is created, it has rank one
  higher than the ranks of the incoming `SparseTensor` objects (they have been
  concatenated along a new row dimension).

  The output `SparseTensor` object's shape values for all dimensions but the
  first are the max across the input `SparseTensor` objects' shape values
  for the corresponding dimensions.  Its first shape value is `N`, the minibatch
  size.

  The input `SparseTensor` objects' indices are assumed ordered in
  standard lexicographic order.  If this is not the case, after this
  step run `sparse.reorder` to restore index ordering.

  For example, if the serialized input is a `[2, 3]` matrix representing two
  original `SparseTensor` objects:

      index = [ 0]
              [10]
              [20]
      values = [1, 2, 3]
      shape = [50]

  and

      index = [ 2]
              [10]
      values = [4, 5]
      shape = [30]

  then the final deserialized `SparseTensor` will be:

      index = [0  0]
              [0 10]
              [0 20]
              [1  2]
              [1 10]
      values = [1, 2, 3, 4, 5]
      shape = [2 50]

  Args:
    serialized_sparse: 2-D `Tensor` of type `string` of shape `[N, 3]`.
      The serialized and packed `SparseTensor` objects.
    dtype: The `dtype` of the serialized `SparseTensor` objects.
    rank: (optional) Python int, the rank of the `SparseTensor` objects.
    name: A name prefix for the returned tensors (optional)

  Returns:
    A `SparseTensor` representing the deserialized `SparseTensor`s,
    concatenated along the `SparseTensor`s' first dimension.

    All of the serialized `SparseTensor`s must have had the same rank and type.
  """
  output_indices, output_values, output_shape = (
      gen_sparse_ops.deserialize_many_sparse(
          serialized_sparse, dtype, name=name))

  # Feed rank data back in, if available
  output_indices.set_shape([None, rank])
  output_shape.set_shape([rank])

  return sparse_tensor.SparseTensor(output_indices, output_values, output_shape)


@tf_export("sparse.matmul", "sparse_tensor_dense_matmul")
@deprecation.deprecated_endpoints("sparse_tensor_dense_matmul")
def sparse_tensor_dense_matmul(sp_a,
                               b,
                               adjoint_a=False,
                               adjoint_b=False,
                               name=None):
  # pylint: disable=line-too-long
  """Multiply SparseTensor (of rank 2) "A" by dense matrix "B".

  No validity checking is performed on the indices of `A`.  However, the
  following input format is recommended for optimal behavior:

  * If `adjoint_a == false`: `A` should be sorted in lexicographically
    increasing order.  Use `sparse.reorder` if you're not sure.
  * If `adjoint_a == true`: `A` should be sorted in order of increasing
    dimension 1 (i.e., "column major" order instead of "row major" order).

  Using `tf.nn.embedding_lookup_sparse` for sparse multiplication:

  It's not obvious but you can consider `embedding_lookup_sparse` as another
  sparse and dense multiplication. In some situations, you may prefer to use
  `embedding_lookup_sparse` even though you're not dealing with embeddings.

  There are two questions to ask in the decision process: Do you need gradients
  computed as sparse too? Is your sparse data represented as two
  `SparseTensor`s: ids and values? There is more explanation about data format
  below. If you answer any of these questions as yes, consider using
  `tf.nn.embedding_lookup_sparse`.

  Following explains differences between the expected SparseTensors:
  For example if dense form of your sparse data has shape `[3, 5]` and values:

      [[  a      ]
       [b       c]
       [    d    ]]


  `SparseTensor` format expected by `sparse_tensor_dense_matmul`:
   `sp_a` (indices, values):

      [0, 1]: a
      [1, 0]: b
      [1, 4]: c
      [2, 2]: d

  `SparseTensor` format expected by `embedding_lookup_sparse`:
   `sp_ids`                 `sp_weights`

      [0, 0]: 1                [0, 0]: a
      [1, 0]: 0                [1, 0]: b
      [1, 1]: 4                [1, 1]: c
      [2, 0]: 2                [2, 0]: d


  Deciding when to use `sparse_tensor_dense_matmul` vs.
  `matmul`(a_is_sparse=True):

  There are a number of questions to ask in the decision process, including:

  * Will the SparseTensor `A` fit in memory if densified?
  * Is the column count of the product large (>> 1)?
  * Is the density of `A` larger than approximately 15%?

  If the answer to several of these questions is yes, consider
  converting the `SparseTensor` to a dense one and using `tf.matmul` with
  `a_is_sparse=True`.

  This operation tends to perform well when `A` is more sparse, if the column
  size of the product is small (e.g. matrix-vector multiplication), if
  `sp_a.dense_shape` takes on large values.

  Below is a rough speed comparison between `sparse_tensor_dense_matmul`,
  labeled 'sparse', and `matmul`(a_is_sparse=True), labeled 'dense'.  For
  purposes of the comparison, the time spent converting from a `SparseTensor` to
  a dense `Tensor` is not included, so it is overly conservative with respect to
  the time ratio.

  Benchmark system:
  CPU: Intel Ivybridge with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:12MB
  GPU: NVidia Tesla k40c

  Compiled with:
  `-c opt --config=cuda --copt=-mavx`

  ```
  tensorflow/python/sparse_tensor_dense_matmul_op_test --benchmarks
  A sparse [m, k] with % nonzero values between 1% and 80%
  B dense [k, n]

  % nnz  n   gpu   m     k     dt(dense)     dt(sparse)   dt(sparse)/dt(dense)
  0.01   1   True  100   100   0.000221166   0.00010154   0.459112
  0.01   1   True  100   1000  0.00033858    0.000109275  0.322745
  0.01   1   True  1000  100   0.000310557   9.85661e-05  0.317385
  0.01   1   True  1000  1000  0.0008721     0.000100875  0.115669
  0.01   1   False 100   100   0.000208085   0.000107603  0.51711
  0.01   1   False 100   1000  0.000327112   9.51118e-05  0.290762
  0.01   1   False 1000  100   0.000308222   0.00010345   0.335635
  0.01   1   False 1000  1000  0.000865721   0.000101397  0.117124
  0.01   10  True  100   100   0.000218522   0.000105537  0.482958
  0.01   10  True  100   1000  0.000340882   0.000111641  0.327506
  0.01   10  True  1000  100   0.000315472   0.000117376  0.372064
  0.01   10  True  1000  1000  0.000905493   0.000123263  0.136128
  0.01   10  False 100   100   0.000221529   9.82571e-05  0.44354
  0.01   10  False 100   1000  0.000330552   0.000112615  0.340687
  0.01   10  False 1000  100   0.000341277   0.000114097  0.334324
  0.01   10  False 1000  1000  0.000819944   0.000120982  0.147549
  0.01   25  True  100   100   0.000207806   0.000105977  0.509981
  0.01   25  True  100   1000  0.000322879   0.00012921   0.400181
  0.01   25  True  1000  100   0.00038262    0.00014158   0.370035
  0.01   25  True  1000  1000  0.000865438   0.000202083  0.233504
  0.01   25  False 100   100   0.000209401   0.000104696  0.499979
  0.01   25  False 100   1000  0.000321161   0.000130737  0.407076
  0.01   25  False 1000  100   0.000377012   0.000136801  0.362856
  0.01   25  False 1000  1000  0.000861125   0.00020272   0.235413
  0.2    1   True  100   100   0.000206952   9.69219e-05  0.46833
  0.2    1   True  100   1000  0.000348674   0.000147475  0.422959
  0.2    1   True  1000  100   0.000336908   0.00010122   0.300439
  0.2    1   True  1000  1000  0.001022      0.000203274  0.198898
  0.2    1   False 100   100   0.000207532   9.5412e-05   0.459746
  0.2    1   False 100   1000  0.000356127   0.000146824  0.41228
  0.2    1   False 1000  100   0.000322664   0.000100918  0.312764
  0.2    1   False 1000  1000  0.000998987   0.000203442  0.203648
  0.2    10  True  100   100   0.000211692   0.000109903  0.519165
  0.2    10  True  100   1000  0.000372819   0.000164321  0.440753
  0.2    10  True  1000  100   0.000338651   0.000144806  0.427596
  0.2    10  True  1000  1000  0.00108312    0.000758876  0.70064
  0.2    10  False 100   100   0.000215727   0.000110502  0.512231
  0.2    10  False 100   1000  0.000375419   0.0001613    0.429653
  0.2    10  False 1000  100   0.000336999   0.000145628  0.432132
  0.2    10  False 1000  1000  0.00110502    0.000762043  0.689618
  0.2    25  True  100   100   0.000218705   0.000129913  0.594009
  0.2    25  True  100   1000  0.000394794   0.00029428   0.745402
  0.2    25  True  1000  100   0.000404483   0.0002693    0.665788
  0.2    25  True  1000  1000  0.0012002     0.00194494   1.62052
  0.2    25  False 100   100   0.000221494   0.0001306    0.589632
  0.2    25  False 100   1000  0.000396436   0.000297204  0.74969
  0.2    25  False 1000  100   0.000409346   0.000270068  0.659754
  0.2    25  False 1000  1000  0.00121051    0.00193737   1.60046
  0.5    1   True  100   100   0.000214981   9.82111e-05  0.456836
  0.5    1   True  100   1000  0.000415328   0.000223073  0.537101
  0.5    1   True  1000  100   0.000358324   0.00011269   0.314492
  0.5    1   True  1000  1000  0.00137612    0.000437401  0.317851
  0.5    1   False 100   100   0.000224196   0.000101423  0.452386
  0.5    1   False 100   1000  0.000400987   0.000223286  0.556841
  0.5    1   False 1000  100   0.000368825   0.00011224   0.304318
  0.5    1   False 1000  1000  0.00136036    0.000429369  0.31563
  0.5    10  True  100   100   0.000222125   0.000112308  0.505608
  0.5    10  True  100   1000  0.000461088   0.00032357   0.701753
  0.5    10  True  1000  100   0.000394624   0.000225497  0.571422
  0.5    10  True  1000  1000  0.00158027    0.00190898   1.20801
  0.5    10  False 100   100   0.000232083   0.000114978  0.495418
  0.5    10  False 100   1000  0.000454574   0.000324632  0.714146
  0.5    10  False 1000  100   0.000379097   0.000227768  0.600817
  0.5    10  False 1000  1000  0.00160292    0.00190168   1.18638
  0.5    25  True  100   100   0.00023429    0.000151703  0.647501
  0.5    25  True  100   1000  0.000497462   0.000598873  1.20386
  0.5    25  True  1000  100   0.000460778   0.000557038  1.20891
  0.5    25  True  1000  1000  0.00170036    0.00467336   2.74845
  0.5    25  False 100   100   0.000228981   0.000155334  0.678371
  0.5    25  False 100   1000  0.000496139   0.000620789  1.25124
  0.5    25  False 1000  100   0.00045473    0.000551528  1.21287
  0.5    25  False 1000  1000  0.00171793    0.00467152   2.71927
  0.8    1   True  100   100   0.000222037   0.000105301  0.47425
  0.8    1   True  100   1000  0.000410804   0.000329327  0.801664
  0.8    1   True  1000  100   0.000349735   0.000131225  0.375212
  0.8    1   True  1000  1000  0.00139219    0.000677065  0.48633
  0.8    1   False 100   100   0.000214079   0.000107486  0.502085
  0.8    1   False 100   1000  0.000413746   0.000323244  0.781261
  0.8    1   False 1000  100   0.000348983   0.000131983  0.378193
  0.8    1   False 1000  1000  0.00136296    0.000685325  0.50282
  0.8    10  True  100   100   0.000229159   0.00011825   0.516017
  0.8    10  True  100   1000  0.000498845   0.000532618  1.0677
  0.8    10  True  1000  100   0.000383126   0.00029935   0.781336
  0.8    10  True  1000  1000  0.00162866    0.00307312   1.88689
  0.8    10  False 100   100   0.000230783   0.000124958  0.541452
  0.8    10  False 100   1000  0.000493393   0.000550654  1.11606
  0.8    10  False 1000  100   0.000377167   0.000298581  0.791642
  0.8    10  False 1000  1000  0.00165795    0.00305103   1.84024
  0.8    25  True  100   100   0.000233496   0.000175241  0.75051
  0.8    25  True  100   1000  0.00055654    0.00102658   1.84458
  0.8    25  True  1000  100   0.000463814   0.000783267  1.68875
  0.8    25  True  1000  1000  0.00186905    0.00755344   4.04132
  0.8    25  False 100   100   0.000240243   0.000175047  0.728625
  0.8    25  False 100   1000  0.000578102   0.00104499   1.80763
  0.8    25  False 1000  100   0.000485113   0.000776849  1.60138
  0.8    25  False 1000  1000  0.00211448    0.00752736   3.55992
  ```

  Args:
    sp_a: SparseTensor A, of rank 2.
    b: A dense Matrix with the same dtype as sp_a.
    adjoint_a: Use the adjoint of A in the matrix multiply.  If A is complex,
      this is transpose(conj(A)).  Otherwise it's transpose(A).
    adjoint_b: Use the adjoint of B in the matrix multiply.  If B is complex,
      this is transpose(conj(B)).  Otherwise it's transpose(B).
    name: A name prefix for the returned tensors (optional)

  Returns:
    A dense matrix (pseudo-code in dense np.matrix notation):
      `A = A.H if adjoint_a else A`
      `B = B.H if adjoint_b else B`
      `return A*B`
  """
  # pylint: enable=line-too-long
  sp_a = _convert_to_sparse_tensor(sp_a)
  with ops.name_scope(name, "SparseTensorDenseMatMul",
                      [sp_a.indices, sp_a.values, b]) as name:
    b = ops.convert_to_tensor(b, name="b")
    return gen_sparse_ops.sparse_tensor_dense_mat_mul(
        a_indices=sp_a.indices,
        a_values=sp_a.values,
        a_shape=sp_a.dense_shape,
        b=b,
        adjoint_a=adjoint_a,
        adjoint_b=adjoint_b)


@tf_export("sparse.softmax", "sparse_softmax")
@deprecation.deprecated_endpoints("sparse_softmax")
def sparse_softmax(sp_input, name=None):
  """Applies softmax to a batched N-D `SparseTensor`.

  The inputs represent an N-D SparseTensor with logical shape `[..., B, C]`
  (where `N >= 2`), and with indices sorted in the canonical lexicographic
  order.

  This op is equivalent to applying the normal `tf.nn.softmax()` to each
  innermost logical submatrix with shape `[B, C]`, but with the catch that *the
  implicitly zero elements do not participate*.  Specifically, the algorithm is
  equivalent to:

    (1) Applies `tf.nn.softmax()` to a densified view of each innermost
        submatrix with shape `[B, C]`, along the size-C dimension;
    (2) Masks out the original implicitly-zero locations;
    (3) Renormalizes the remaining elements.

  Hence, the `SparseTensor` result has exactly the same non-zero indices and
  shape.

  Example:

  ```python
  # First batch:
  # [?   e.]
  # [1.  ? ]
  # Second batch:
  # [e   ? ]
  # [e   e ]
  shape = [2, 2, 2]  # 3-D SparseTensor
  values = np.asarray([[[0., np.e], [1., 0.]], [[np.e, 0.], [np.e, np.e]]])
  indices = np.vstack(np.where(values)).astype(np.int64).T

  result = tf.sparse_softmax(tf.SparseTensor(indices, values, shape))
  # ...returning a 3-D SparseTensor, equivalent to:
  # [?   1.]     [1    ?]
  # [1.  ? ] and [.5  .5]
  # where ? means implicitly zero.
  ```

  Args:
    sp_input: N-D `SparseTensor`, where `N >= 2`.
    name: optional name of the operation.
  Returns:
    output: N-D `SparseTensor` representing the results.
  """
  with ops.name_scope(name, "SparseSoftmax",
                      [sp_input.indices, sp_input.values]) as name:
    out_vals = gen_sparse_ops.sparse_softmax(sp_input.indices, sp_input.values,
                                             sp_input.dense_shape)
    return sparse_tensor.SparseTensor(sp_input.indices, out_vals,
                                      sp_input.dense_shape)


@tf_export("sparse.maximum", "sparse_maximum")
@deprecation.deprecated_endpoints("sparse_maximum")
def sparse_maximum(sp_a, sp_b, name=None):
  """Returns the element-wise max of two SparseTensors.

  Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
  Example:

  ```python
  sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7])
  sp_one = sparse_tensor.SparseTensor([[1]], [1], [7])
  res = tf.sparse_maximum(sp_zero, sp_one).eval()
  # "res" should be equal to SparseTensor([[0], [1]], [0, 1], [7]).
  ```

  Args:
    sp_a: a `SparseTensor` operand whose dtype is real, and indices
      lexicographically ordered.
    sp_b: the other `SparseTensor` operand with the same requirements (and the
      same shape).
    name: optional name of the operation.
  Returns:
    output: the output SparseTensor.
  """
  with ops.name_scope(
      name, "SparseSparseMaximum",
      [sp_a.indices, sp_a.values, sp_b.indices, sp_b.values]) as name:
    out_indices, out_values = gen_sparse_ops.sparse_sparse_maximum(
        sp_a.indices,
        sp_a.values,
        sp_a.dense_shape,
        sp_b.indices,
        sp_b.values,
        sp_b.dense_shape,
        name=name)
  return sparse_tensor.SparseTensor(out_indices, out_values, sp_a.dense_shape)


@tf_export("sparse.minimum", "sparse_minimum")
@deprecation.deprecated_endpoints("sparse_minimum")
def sparse_minimum(sp_a, sp_b, name=None):
  """Returns the element-wise min of two SparseTensors.

  Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
  Example:

  ```python
  sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7])
  sp_one = sparse_tensor.SparseTensor([[1]], [1], [7])
  res = tf.sparse_minimum(sp_zero, sp_one).eval()
  # "res" should be equal to SparseTensor([[0], [1]], [0, 0], [7]).
  ```

  Args:
    sp_a: a `SparseTensor` operand whose dtype is real, and indices
      lexicographically ordered.
    sp_b: the other `SparseTensor` operand with the same requirements (and the
      same shape).
    name: optional name of the operation.
  Returns:
    output: the output SparseTensor.
  """
  with ops.name_scope(
      name, "SparseSparseMinimum",
      [sp_a.indices, sp_a.values, sp_b.indices, sp_b.values]) as name:
    out_indices, out_values = gen_sparse_ops.sparse_sparse_minimum(
        sp_a.indices,
        sp_a.values,
        sp_a.dense_shape,
        sp_b.indices,
        sp_b.values,
        sp_b.dense_shape,
        name=name)
  return sparse_tensor.SparseTensor(out_indices, out_values, sp_a.dense_shape)


@tf_export("sparse.transpose", "sparse_transpose")
@deprecation.deprecated_endpoints("sparse_transpose")
def sparse_transpose(sp_input, perm=None, name=None):
  """Transposes a `SparseTensor`

  The returned tensor's dimension i will correspond to the input dimension
  `perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is
  the rank of the input tensor. Hence by default, this operation performs a
  regular matrix transpose on 2-D input Tensors.

  For example, if `sp_input` has shape `[4, 5]` and `indices` / `values`:

      [0, 3]: b
      [0, 1]: a
      [3, 1]: d
      [2, 0]: c

  then the output will be a `SparseTensor` of shape `[5, 4]` and
  `indices` / `values`:

      [0, 2]: c
      [1, 0]: a
      [1, 3]: d
      [3, 0]: b

  Args:
    sp_input: The input `SparseTensor`.
    perm: A permutation of the dimensions of `sp_input`.
    name: A name prefix for the returned tensors (optional)
  Returns:
    A transposed `SparseTensor`.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  with ops.name_scope(name, "SparseTranspose", [sp_input]) as name:
    if perm is None:
      rank = array_ops.rank(sp_input)
      perm = (rank - 1) - math_ops.range(0, rank, 1)
    indices = sp_input.indices
    transposed_indices = array_ops.transpose(
        array_ops.gather(array_ops.transpose(indices), perm))

    perm_ = tensor_util.constant_value(ops.convert_to_tensor(perm))
    if perm_ is not None and sp_input.get_shape().is_fully_defined():
      old_shape_ = sp_input.get_shape().as_list()
      transposed_dense_shape = list(old_shape_)  # Copy.
      for i, p in enumerate(perm_):
        transposed_dense_shape[i] = old_shape_[p]
    else:
      dense_shape = sp_input.dense_shape
      transposed_dense_shape = array_ops.gather(dense_shape, perm)
    transposed_st = sparse_tensor.SparseTensor(
        transposed_indices, sp_input.values, transposed_dense_shape)
    transposed_st = sparse_reorder(transposed_st)
    return transposed_st


def _add_sparse_to_tensors_map(sp_input,
                               container=None,
                               shared_name=None,
                               name=None):
  """Add a `SparseTensor` to a `SparseTensorsMap` and return its handle.

  Args:
    sp_input: The input `SparseTensor`.
    container: The container for the underlying `SparseTensorsMap` (optional).
    shared_name: The shared name for the underlying `SparseTensorsMap`
      (optional, defaults to the name of the newly created op).
    name: A name prefix for the returned tensors (optional).

  Returns:
    A string 1-vector (1D `Tensor`), with the single element representing the
    a unique handle to a `SparseTensor` stored by the `SparseTensorMap`
    underlying this op.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  return gen_sparse_ops.add_sparse_to_tensors_map(
      sp_input.indices,
      sp_input.values,
      sp_input.dense_shape,
      container=container,
      shared_name=shared_name,
      name=name)


def _add_many_sparse_to_tensors_map(sp_input,
                                    container=None,
                                    shared_name=None,
                                    name=None):
  """Add a minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles.

  The `SparseTensor` must have rank `R` greater than 1, and the first dimension
  is treated as the minibatch dimension.  Elements of the `SparseTensor`
  must be sorted in increasing order of this first dimension.  The serialized
  `SparseTensor` objects going into each row of the output `Tensor` will have
  rank `R-1`.

  The minibatch size `N` is extracted from `sparse_shape[0]`.

  Args:
    sp_input: The input rank `R` `SparseTensor`.
    container: The container for the underlying `SparseTensorsMap` (optional).
    shared_name: The shared name for the underlying `SparseTensorsMap`
      (optional, defaults to the name of the newly created op).
    name: A name prefix for the returned tensors (optional).

  Returns:
    A string matrix (2-D `Tensor`) with `N` rows and `1` column.
    Each row represents a unique handle to a `SparseTensor` stored by
    the `SparseTensorMap` underlying this op.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  return gen_sparse_ops.add_many_sparse_to_tensors_map(
      sp_input.indices,
      sp_input.values,
      sp_input.dense_shape,
      container=container,
      shared_name=shared_name,
      name=name)


def _take_many_sparse_from_tensors_map(sparse_map_op,
                                       sparse_handles,
                                       rank=None,
                                       name=None):
  """Read `SparseTensors` from a `SparseTensorsMap` and concatenate them.

  The input `sparse_handles` must be a string matrix of shape `[N, 1]` where
  `N` is the minibatch size and the rows correspond to packed outputs of
  `add_sparse_to_tensors_map`.  The ranks of the original `SparseTensor` objects
  must all match.  When the final `SparseTensor` is created, it has rank one
  higher than the ranks of the incoming `SparseTensor` objects (they have been
  concatenated along a new row dimension).

  The output `SparseTensor` object's shape values for all dimensions but the
  first are the max across the input `SparseTensor` objects' shape values
  for the corresponding dimensions.  Its first shape value is `N`, the minibatch
  size.

  The input `SparseTensor` objects' indices are assumed ordered in
  standard lexicographic order.  If this is not the case, after this
  step run `sparse.reorder` to restore index ordering.

  For example, if the serialized input is a `[2, 3]` matrix representing two
  original `SparseTensor` objects:

      index = [ 0]
              [10]
              [20]
      values = [1, 2, 3]
      shape = [50]

  and

      index = [ 2]
              [10]
      values = [4, 5]
      shape = [30]

  then the final deserialized `SparseTensor` will be:

      index = [0  0]
              [0 10]
              [0 20]
              [1  2]
              [1 10]
      values = [1, 2, 3, 4, 5]
      shape = [2 50]

  Args:
    sparse_map_op: The `Operation` that created the original handles.
      Usually this is, e.g., `add_sparse_to_tensors_map(...).op`.
    sparse_handles: 2-D `Tensor` of type `string` of shape `[N, 1]`.
      The serialized and packed `SparseTensor` objects.
    rank: (optional) Python int, the rank of the `SparseTensor` objects.
    name: A name prefix for the returned tensors (optional)

  Returns:
    A `SparseTensor` representing the deserialized `SparseTensor`s,
    concatenated along the `SparseTensor`s' first dimension.

    All of the serialized `SparseTensor`s must have had the same rank and type.
  """
  if not isinstance(sparse_map_op, ops.Operation):
    raise TypeError("sparse_map_op be an Operation")
  if sparse_map_op.type not in ("AddSparseToTensorsMap",
                                "AddManySparseToTensorsMap"):
    raise TypeError(
        "sparse_map_op must be one of AddSparseToTensorsMap or "
        "AddSparseToTensorsMap. Instead, found `%s`." % sparse_map_op.type)
  with ops.colocate_with(sparse_map_op):
    shared_name = sparse_map_op.get_attr("shared_name") or sparse_map_op.name
    output_indices, output_values, output_shape = (
        gen_sparse_ops.take_many_sparse_from_tensors_map(
            sparse_handles,
            dtype=sparse_map_op.get_attr("T"),
            container=sparse_map_op.get_attr("container"),
            shared_name=shared_name,
            name=name))

  # Feed rank data back in, if available
  output_indices.set_shape([None, rank])
  output_shape.set_shape([rank])

  return sparse_tensor.SparseTensor(output_indices, output_values, output_shape)