aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/sparse_grad.py
blob: 97353d6c747cb7e4d3c1fa92ad61af24fb17de91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Gradients for operators defined in sparse_ops.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_sparse_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import sparse_ops


# TODO(b/31222613): This op may be differentiable, and there may be
# latent bugs here.
ops.NotDifferentiable("SparseAddGrad")
ops.NotDifferentiable("SparseConcat")
ops.NotDifferentiable("SparseToDense")


@ops.RegisterGradient("SparseReorder")
def _SparseReorderGrad(op, unused_output_indices_grad, output_values_grad):
  """Gradients for the SparseReorder op.

  Args:
    op: the SparseReorder op
    unused_output_indices_grad: the incoming gradients of the output indices
    output_values_grad: the incoming gradients of the output values

  Returns:
    Gradient for each of the 3 input tensors:
      (input_indices, input_values, input_shape)
    The gradients for input_indices and input_shape is None.
  """
  input_indices = op.inputs[0]
  input_shape = op.inputs[2]

  num_entries = array_ops.shape(input_indices)[0]
  entry_indices = math_ops.range(num_entries)
  sp_unordered = sparse_tensor.SparseTensor(
      input_indices, entry_indices, input_shape)
  sp_ordered = sparse_ops.sparse_reorder(sp_unordered)
  inverted_permutation = array_ops.invert_permutation(sp_ordered.values)

  return (None,
          array_ops.gather(output_values_grad, inverted_permutation),
          None)


@ops.RegisterGradient("SparseAdd")
def _SparseAddGrad(op, *grads):
  """The backward operator for the SparseAdd op.

  The SparseAdd op calculates A + B, where A, B, and the sum are all represented
  as `SparseTensor` objects.  This op takes in the upstream gradient w.r.t.
  non-empty values of the sum, and outputs the gradients w.r.t. the non-empty
  values of A and B.

  Args:
    op: the SparseAdd op
    *grads: the incoming gradients, one element per output of `op`

  Returns:
    Gradient for each of the 6 input tensors of SparseAdd:
      (a_indices, a_values, a_shape, b_indices, b_values, b_shape, thresh)
    The gradients for the indices, shapes, and the threshold are None.
  """
  val_grad = grads[1]
  a_indices = op.inputs[0]
  b_indices = op.inputs[3]
  sum_indices = op.outputs[0]
  # NOTE: we do not need to take `thresh` into account, since it simply affects
  # the non-zero elements of the sum, and we will peek into `sum_indices` in the
  # gradient op.

  a_val_grad, b_val_grad = gen_sparse_ops.sparse_add_grad(
      val_grad, a_indices, b_indices, sum_indices)
  a_val_grad.set_shape(op.inputs[1].get_shape())
  b_val_grad.set_shape(op.inputs[4].get_shape())
  # (a_indices, a_values, a_shape, b_indices, b_values, b_shape, thresh)
  return (None, a_val_grad, None, None, b_val_grad, None, None)


@ops.RegisterGradient("SparseTensorDenseAdd")
def _SparseTensorDenseAddGrad(op, out_grad):
  sp_indices = op.inputs[0]
  # (sparse_indices, sparse_values, sparse_shape, dense)
  return (None, array_ops.gather_nd(out_grad, sp_indices), None, out_grad)


@ops.RegisterGradient("SparseReduceSum")
def _SparseReduceSumGrad(op, out_grad):
  """Similar to gradient for the Sum Op (i.e. tf.reduce_sum())."""
  sp_indices = op.inputs[0]
  sp_shape = op.inputs[2]
  output_shape_kept_dims = math_ops.reduced_shape(sp_shape, op.inputs[3])
  out_grad_reshaped = array_ops.reshape(out_grad, output_shape_kept_dims)
  scale = sp_shape // math_ops.to_int64(output_shape_kept_dims)
  # (sparse_indices, sparse_values, sparse_shape, reduction_axes)
  return (None, array_ops.gather_nd(out_grad_reshaped, sp_indices // scale),
          None, None)


@ops.RegisterGradient("SparseTensorDenseMatMul")
def _SparseTensorDenseMatMulGrad(op, grad):
  """Gradients for the dense tensor in the SparseTensorDenseMatMul op.

  If either input is complex, no gradient is provided.

  Args:
    op: the SparseTensorDenseMatMul op
    grad: the incoming gradient

  Returns:
    Gradient for each of the 4 input tensors:
      (sparse_indices, sparse_values, sparse_shape, dense_tensor)
    The gradients for indices and shape are None.

  Raises:
    TypeError: When the two operands don't have the same type.
  """
  a_indices, a_values, a_shape = op.inputs[:3]
  b = op.inputs[3]
  adj_a = op.get_attr("adjoint_a")
  adj_b = op.get_attr("adjoint_b")

  a_type = a_values.dtype.base_dtype
  b_type = b.dtype.base_dtype
  if a_type != b_type:
    raise TypeError("SparseTensorDenseMatMul op received operands with "
                    "different types: ", a_type, " and ", b_type)
  if a_type in (ops.dtypes.complex64, ops.dtypes.complex128):
    raise NotImplementedError("SparseTensorDenseMatMul op does not support "
                              "complex gradients.")

  # gradient w.r.t. dense
  b_grad = gen_sparse_ops.sparse_tensor_dense_mat_mul(
      a_indices, a_values, a_shape, grad, adjoint_a=not adj_a)
  if adj_b:
    b_grad = array_ops.transpose(b_grad)

  # gradient w.r.t. sparse values
  rows = a_indices[:, 0]
  cols = a_indices[:, 1]

  # TODO(zongheng, ebrevdo): add conjugates in the right places when complex
  # values are allowed.
  # TODO(zongheng): these gather calls could potentially duplicate rows/cols in
  # memory.  If there is a need, we should look into implementing this more
  # intelligently to avoid duplicating data.
  parts_a = array_ops.gather(grad, rows if not adj_a else cols)
  parts_b = array_ops.gather(b if not adj_b else array_ops.transpose(b),
                             cols if not adj_a else rows)
  a_values_grad = math_ops.reduce_sum(parts_a * parts_b, reduction_indices=1)

  # gradients w.r.t. (a_indices, a_values, a_shape, b)
  return (None, a_values_grad, None, b_grad)


@ops.RegisterGradient("SparseDenseCwiseAdd")
def _SparseDenseCwiseAddGrad(unused_op, unused_grad):
  raise NotImplementedError("Gradient for SparseDenseCwiseAdd is currently not"
                            " implemented yet.")


def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
  """Common code for SparseDenseCwise{Mul,Div} gradients."""
  x_indices = op.inputs[0]
  x_shape = op.inputs[2]
  y = op.inputs[3]

  y_shape = math_ops.to_int64(array_ops.shape(y))
  num_added_dims = array_ops.expand_dims(
      array_ops.size(x_shape) - array_ops.size(y_shape), 0)
  augmented_y_shape = array_ops.concat(
      [array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)

  scaling = x_shape // augmented_y_shape
  scaled_indices = x_indices // scaling
  scaled_indices = array_ops.slice(scaled_indices,
                                   array_ops.concat([[0], num_added_dims], 0),
                                   [-1, -1])
  dense_vals = array_ops.gather_nd(y, scaled_indices)

  if is_mul:
    dx = grad * dense_vals
    dy_val = grad * op.inputs[1]
  else:
    dx = grad / dense_vals
    dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
  # indices can repeat after scaling, so we can't use sparse_to_dense().
  dy = sparse_ops.sparse_add(
      array_ops.zeros_like(y),
      sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))

  # (sp_indices, sp_vals, sp_shape, dense)
  return (None, dx, None, dy)


@ops.RegisterGradient("SparseDenseCwiseMul")
def _SparseDenseCwiseMulGrad(op, grad):
  """Gradients for SparseDenseCwiseMul."""
  return _SparseDenseCwiseMulOrDivGrad(op, grad, True)


@ops.RegisterGradient("SparseDenseCwiseDiv")
def _SparseDenseCwiseDivGrad(op, grad):
  """Gradients for SparseDenseCwiseDiv."""
  return _SparseDenseCwiseMulOrDivGrad(op, grad, False)


@ops.RegisterGradient("SparseSoftmax")
def _SparseSoftmaxGrad(op, grad):
  """Gradients for SparseSoftmax.

  The calculation is the same as SoftmaxGrad:

    grad_x = grad_softmax * softmax - sum(grad_softmax * softmax) * softmax

  where we now only operate on the non-zero values present in the SparseTensors.

  Args:
    op: the SparseSoftmax op.
    grad: the upstream gradient w.r.t. the non-zero SparseSoftmax output values.

  Returns:
    Gradients w.r.t. the input (sp_indices, sp_values, sp_shape).
  """
  indices, shape = op.inputs[0], op.inputs[2]
  out_vals = op.outputs[0]
  sp_output = sparse_tensor.SparseTensor(indices, out_vals, shape)
  sp_grad = sparse_tensor.SparseTensor(indices, grad, shape)
  sp_product = sparse_tensor.SparseTensor(
      indices, sp_output.values * sp_grad.values, shape)

  # [..., B, 1], dense.
  sum_reduced = -sparse_ops.sparse_reduce_sum(sp_product, [-1], keep_dims=True)
  # sparse [..., B, C] + dense [..., B, 1] with broadcast; outputs sparse.
  sp_sum = sparse_ops.sparse_dense_cwise_add(sp_grad, sum_reduced)

  grad_x = sp_sum.values * sp_output.values
  return [None, grad_x, None]


@ops.RegisterGradient("SparseSparseMaximum")
def _SparseSparseMaximumGrad(unused_op, unused_grad):
  raise NotImplementedError("Gradient for SparseSparseMaximum is currently not"
                            " implemented yet.")


@ops.RegisterGradient("SparseSparseMinimum")
def _SparseSparseMinimumGrad(unused_op, unused_grad):
  raise NotImplementedError("Gradient for SparseSparseMinimum is currently not"
                            " implemented yet.")


@ops.RegisterGradient("SparseFillEmptyRows")
def _SparseFillEmptyRowsGrad(op, unused_grad_output_indices, output_grad_values,
                             unused_grad_empty_row_indicator,
                             unused_grad_reverse_index_map):
  """Gradients for SparseFillEmptyRows."""
  reverse_index_map = op.outputs[3]

  d_values, d_default_value = gen_sparse_ops.sparse_fill_empty_rows_grad(
      reverse_index_map=reverse_index_map, grad_values=output_grad_values)

  # d_indices, d_values, d_dense_shape, d_default_value.
  return [None, d_values, None, d_default_value]