aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/rnn.py
blob: 611f5fa31412e86c8541af9ee6203fbe5b799065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""RNN helpers for TensorFlow models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import logging_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import rnn_cell
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import variable_scope as vs


def rnn(cell, inputs, initial_state=None, dtype=None,
        sequence_length=None, scope=None):
  """Creates a recurrent neural network specified by RNNCell "cell".

  The simplest form of RNN network generated is:
    state = cell.zero_state(...)
    outputs = []
    for input_ in inputs:
      output, state = cell(input_, state)
      outputs.append(output)
    return (outputs, state)

  However, a few other options are available:

  An initial state can be provided.
  If the sequence_length vector is provided, dynamic calculation is performed.
  This method of calculation does not compute the RNN steps past the maximum
  sequence length of the minibatch (thus saving computational time),
  and properly propagates the state at an example's sequence length
  to the final state output.

  The dynamic calculation performed is, at time t for batch row b,
    (output, state)(b, t) =
      (t >= sequence_length(b))
        ? (zeros(cell.output_size), states(b, sequence_length(b) - 1))
        : cell(input(b, t), state(b, t - 1))

  Args:
    cell: An instance of RNNCell.
    inputs: A length T list of inputs, each a tensor of shape
      [batch_size, cell.input_size].
    initial_state: (optional) An initial state for the RNN.  This must be
      a tensor of appropriate type and shape [batch_size x cell.state_size].
    dtype: (optional) The data type for the initial state.  Required if
      initial_state is not provided.
    sequence_length: Specifies the length of each sequence in inputs.
      An int32 or int64 vector (tensor) size [batch_size].  Values in [0, T).
    scope: VariableScope for the created subgraph; defaults to "RNN".

  Returns:
    A pair (outputs, state) where:
      outputs is a length T list of outputs (one for each input)
      state is the final state

  Raises:
    TypeError: If "cell" is not an instance of RNNCell.
    ValueError: If inputs is None or an empty list, or if the input depth
      cannot be inferred from inputs via shape inference.
  """

  if not isinstance(cell, rnn_cell.RNNCell):
    raise TypeError("cell must be an instance of RNNCell")
  if not isinstance(inputs, list):
    raise TypeError("inputs must be a list")
  if not inputs:
    raise ValueError("inputs must not be empty")

  outputs = []
  # Create a new scope in which the caching device is either
  # determined by the parent scope, or is set to place the cached
  # Variable using the same placement as for the rest of the RNN.
  with vs.variable_scope(scope or "RNN") as varscope:
    if varscope.caching_device is None:
      varscope.set_caching_device(lambda op: op.device)

    # Temporarily avoid EmbeddingWrapper and seq2seq badness
    # TODO(lukaszkaiser): remove EmbeddingWrapper
    if inputs[0].get_shape().ndims != 1:
      (fixed_batch_size, input_size) = inputs[0].get_shape().with_rank(2)
      if input_size.value is None:
        raise ValueError(
            "Input size (second dimension of inputs[0]) must be accessible via "
            "shape inference, but saw value None.")
    else:
      fixed_batch_size = inputs[0].get_shape().with_rank_at_least(1)[0]

    if fixed_batch_size.value:
      batch_size = fixed_batch_size.value
    else:
      batch_size = array_ops.shape(inputs[0])[0]
    if initial_state is not None:
      state = initial_state
    else:
      if not dtype:
        raise ValueError("If no initial_state is provided, dtype must be.")
      state = cell.zero_state(batch_size, dtype)

    if sequence_length is not None:
      sequence_length = math_ops.to_int32(sequence_length)

    if sequence_length:  # Prepare variables
      zero_output = array_ops.zeros(
          array_ops.pack([batch_size, cell.output_size]), inputs[0].dtype)
      zero_output.set_shape(
          tensor_shape.TensorShape([fixed_batch_size.value, cell.output_size]))
      min_sequence_length = math_ops.reduce_min(sequence_length)
      max_sequence_length = math_ops.reduce_max(sequence_length)

    for time, input_ in enumerate(inputs):
      if time > 0: vs.get_variable_scope().reuse_variables()
      # pylint: disable=cell-var-from-loop
      call_cell = lambda: cell(input_, state)
      # pylint: enable=cell-var-from-loop
      if sequence_length:
        (output, state) = _rnn_step(
            time, sequence_length, min_sequence_length, max_sequence_length,
            zero_output, state, call_cell)
      else:
        (output, state) = call_cell()

      outputs.append(output)

    return (outputs, state)


def state_saving_rnn(cell, inputs, state_saver, state_name,
                     sequence_length=None, scope=None):
  """RNN that accepts a state saver for time-truncated RNN calculation.

  Args:
    cell: An instance of RNNCell.
    inputs: A length T list of inputs, each a tensor of shape
      [batch_size, cell.input_size].
    state_saver: A state saver object with methods `state` and `save_state`.
    state_name: The name to use with the state_saver.
    sequence_length: (optional) An int32/int64 vector size [batch_size].
      See the documentation for rnn() for more details about sequence_length.
    scope: VariableScope for the created subgraph; defaults to "RNN".

  Returns:
    A pair (outputs, state) where:
      outputs is a length T list of outputs (one for each input)
      states is the final state

  Raises:
    TypeError: If "cell" is not an instance of RNNCell.
    ValueError: If inputs is None or an empty list.
  """
  initial_state = state_saver.state(state_name)
  (outputs, state) = rnn(cell, inputs, initial_state=initial_state,
                         sequence_length=sequence_length, scope=scope)
  save_state = state_saver.save_state(state_name, state)
  with ops.control_dependencies([save_state]):
    outputs[-1] = array_ops.identity(outputs[-1])

  return (outputs, state)


def _rnn_step(
    time, sequence_length, min_sequence_length, max_sequence_length,
    zero_output, state, call_cell):
  """Calculate one step of a dynamic RNN minibatch.

  Returns an (output, state) pair conditioned on the sequence_lengths.
  The pseudocode is something like:

  if t >= max_sequence_length:
    return (zero_output, state)
  if t < min_sequence_length:
    return call_cell()

  # Selectively output zeros or output, old state or new state depending
  # on if we've finished calculating each row.
  new_output, new_state = call_cell()
  final_output = np.vstack([
    zero_output if time >= sequence_lengths[r] else new_output_r
    for r, new_output_r in enumerate(new_output)
  ])
  final_state = np.vstack([
    state[r] if time >= sequence_lengths[r] else new_state_r
    for r, new_state_r in enumerate(new_state)
  ])
  return (final_output, final_state)

  Args:
    time: Python int, the current time step
    sequence_length: int32 `Tensor` vector of size [batch_size]
    min_sequence_length: int32 `Tensor` scalar, min of sequence_length
    max_sequence_length: int32 `Tensor` scalar, max of sequence_length
    zero_output: `Tensor` vector of shape [output_size]
    state: `Tensor` matrix of shape [batch_size, state_size]
    call_cell: lambda returning tuple of (new_output, new_state) where
      new_output is a `Tensor` matrix of shape [batch_size, output_size]
      new_state is a `Tensor` matrix of shape [batch_size, state_size]

  Returns:
    A tuple of (final_output, final_state) as given by the pseudocode above:
      final_output is a `Tensor` matrix of shape [batch_size, output_size]
      final_state is a `Tensor` matrix of shape [batch_size, state_size]
  """
  # Step 1: determine whether we need to call_cell or not
  empty_update = lambda: (zero_output, state)
  state_shape = state.get_shape()
  output, new_state = control_flow_ops.cond(
      time < max_sequence_length, call_cell, empty_update)

  # Step 2: determine whether we need to copy through state and/or outputs
  existing_output_state = lambda: (output, new_state)

  def copy_through():
    # Use broadcasting select to determine which values should get
    # the previous state & zero output, and which values should get
    # a calculated state & output.
    copy_cond = (time >= sequence_length)
    return (math_ops.select(copy_cond, zero_output, output),
            math_ops.select(copy_cond, state, new_state))

  (output, state) = control_flow_ops.cond(
      time < min_sequence_length, existing_output_state, copy_through)
  output.set_shape(zero_output.get_shape())
  state.set_shape(state_shape)
  return (output, state)


def _reverse_seq(input_seq, lengths):
  """Reverse a list of Tensors up to specified lengths.

  Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
    lengths:   A tensor of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply reverses
               the list.

  Returns:
    time-reversed sequence
  """
  if lengths is None:
    return list(reversed(input_seq))

  input_shape = tensor_shape.matrix(None, None)
  for input_ in input_seq:
    input_shape.merge_with(input_.get_shape())
    input_.set_shape(input_shape)

  # Join into (time, batch_size, depth)
  s_joined = array_ops.pack(input_seq)

  # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
  if lengths is not None:
    lengths = math_ops.to_int64(lengths)

  # Reverse along dimension 0
  s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
  # Split again into list
  result = array_ops.unpack(s_reversed)
  for r in result:
    r.set_shape(input_shape)
  return result


def bidirectional_rnn(cell_fw, cell_bw, inputs,
                      initial_state_fw=None, initial_state_bw=None,
                      dtype=None, sequence_length=None, scope=None):
  """Creates a bidirectional recurrent neural network.

  Similar to the unidirectional case above (rnn) but takes input and builds
  independent forward and backward RNNs with the final forward and backward
  outputs depth-concatenated, such that the output will have the format
  [time][batch][cell_fw.output_size + cell_bw.output_size]. The input_size of
  forward and backward cell must match. The initial state for both directions
  is zero by default (but can be set optionally) and no intermediate states are
  ever returned -- the network is fully unrolled for the given (passed in)
  length(s) of the sequence(s) or completely unrolled if length(s) is not given.

  Args:
    cell_fw: An instance of RNNCell, to be used for forward direction.
    cell_bw: An instance of RNNCell, to be used for backward direction.
    inputs: A length T list of inputs, each a tensor of shape
      [batch_size, cell.input_size].
    initial_state_fw: (optional) An initial state for the forward RNN.
      This must be a tensor of appropriate type and shape
      [batch_size x cell.state_size].
    initial_state_bw: (optional) Same as for initial_state_fw.
    dtype: (optional) The data type for the initial state.  Required if either
      of the initial states are not provided.
    sequence_length: (optional) An int32/int64 vector, size [batch_size],
      containing the actual lengths for each of the sequences.
    scope: VariableScope for the created subgraph; defaults to "BiRNN"

  Returns:
    A tuple (outputs, output_state_fw, output_state_bw) where:
      outputs is a length T list of outputs (one for each input), which
      are depth-concatenated forward and backward outputs
      output_state_fw is the final state of the forward rnn
      output_state_bw is the final state of the backward rnn

  Raises:
    TypeError: If "cell_fw" or "cell_bw" is not an instance of RNNCell.
    ValueError: If inputs is None or an empty list.
  """

  if not isinstance(cell_fw, rnn_cell.RNNCell):
    raise TypeError("cell_fw must be an instance of RNNCell")
  if not isinstance(cell_bw, rnn_cell.RNNCell):
    raise TypeError("cell_bw must be an instance of RNNCell")
  if not isinstance(inputs, list):
    raise TypeError("inputs must be a list")
  if not inputs:
    raise ValueError("inputs must not be empty")

  name = scope or "BiRNN"
  # Forward direction
  with vs.variable_scope(name + "_FW") as fw_scope:
    output_fw, output_state_fw = rnn(cell_fw, inputs, initial_state_fw, dtype,
                       sequence_length, scope=fw_scope)

  # Backward direction
  with vs.variable_scope(name + "_BW") as bw_scope:
    tmp, output_state_bw = rnn(cell_bw, _reverse_seq(inputs, sequence_length),
                 initial_state_bw, dtype, sequence_length, scope=bw_scope)
  output_bw = _reverse_seq(tmp, sequence_length)
  # Concat each of the forward/backward outputs
  outputs = [array_ops.concat(1, [fw, bw])
             for fw, bw in zip(output_fw, output_bw)]

  return (outputs, output_state_fw, output_state_bw)


def dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None,
                dtype=None, parallel_iterations=None, swap_memory=False,
                time_major=False, scope=None):
  """Creates a recurrent neural network specified by RNNCell "cell".

  This function is functionally identical to the function `rnn` above, but
  performs fully dynamic unrolling of `inputs`.

  Unlike `rnn`, the input `inputs` is not a Python list of `Tensors`.  Instead,
  it is a single `Tensor` where the maximum time is either the first or second
  dimension (see the parameter `time_major`).  The corresponding output is
  a single `Tensor` having the same number of time steps and batch size.

  The parameter `sequence_length` is required and dynamic calculation is
  automatically performed.

  Args:
    cell: An instance of RNNCell.
    inputs: The RNN inputs.
      If time_major == False (default), this must be a tensor of shape:
        `[batch_size, max_time, cell.input_size]`.
      If time_major == True, this must be a tensor of shape:
        `[max_time, batch_size, cell.input_size]`.
    sequence_length: (optional) An int32/int64 vector sized `[batch_size]`.
    initial_state: (optional) An initial state for the RNN.  This must be
      a tensor of appropriate type and shape `[batch_size x cell.state_size]`.
    dtype: (optional) The data type for the initial state.  Required if
      initial_state is not provided.
    parallel_iterations: (Default: 32).  The number of iterations to run in
      parallel.  Those operations which do not have any temporal dependency
      and can be run in parallel, will be.  This parameter trades off
      time for space.  Values >> 1 use more memory but take less time,
      while smaller values use less memory but computations take longer.
    swap_memory: Swap the tensors produced in forward inference but needed
      for back prop from GPU to CPU.
    time_major: The shape format of the `inputs` and `outputs` Tensors.
      If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`.
      If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`.
      Using time_major = False is a bit more efficient because it avoids
      transposes at the beginning and end of the RNN calculation.  However,
      most TensorFlow data is batch-major, so by default this function
      accepts input and emits output in batch-major form.
    scope: VariableScope for the created subgraph; defaults to "RNN".

  Returns:
    A pair (outputs, state) where:
      outputs: The RNN output `Tensor`.
        If time_major == False (default), this will be a `Tensor` shaped:
          `[batch_size, max_time, cell.output_size]`.
        If time_major == True, this will be a `Tensor` shaped:
          `[max_time, batch_size, cell.output_size]`.
      state: The final state, shaped:
        `[batch_size, cell.state_size]`.

  Raises:
    TypeError: If "cell" is not an instance of RNNCell.
    ValueError: If inputs is None or an empty list.
  """

  if not isinstance(cell, rnn_cell.RNNCell):
    raise TypeError("cell must be an instance of RNNCell")

  # By default, time_major==False and inputs are batch-major: shaped
  #   [batch, time, depth]
  # For internal calculations, we transpose to [time, batch, depth]
  if not time_major:
    inputs = array_ops.transpose(inputs, [1, 0, 2])  # (B,T,D) => (T,B,D)

  parallel_iterations = parallel_iterations or 32
  if sequence_length is not None:
    sequence_length = math_ops.to_int32(sequence_length)
    sequence_length = array_ops.identity(  # Just to find it in the graph.
        sequence_length, name="sequence_length")

  # Create a new scope in which the caching device is either
  # determined by the parent scope, or is set to place the cached
  # Variable using the same placement as for the rest of the RNN.
  with vs.variable_scope(scope or "RNN") as varscope:
    if varscope.caching_device is None:
      varscope.set_caching_device(lambda op: op.device)
    input_shape = array_ops.shape(inputs)
    batch_size = input_shape[1]

    if initial_state is not None:
      state = initial_state
    else:
      if not dtype:
        raise ValueError("If no initial_state is provided, dtype must be.")
      state = cell.zero_state(batch_size, dtype)

    def _assert_has_shape(x, shape):
      x_shape = array_ops.shape(x)
      packed_shape = array_ops.pack(shape)
      return logging_ops.Assert(
          math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)),
          ["Expected shape for Tensor %s is " % x.name,
           packed_shape, " but saw shape: ", x_shape])

    if sequence_length is not None:
      # Perform some shape validation
      with ops.control_dependencies(
          [_assert_has_shape(sequence_length, [batch_size])]):
        sequence_length = array_ops.identity(
            sequence_length, name="CheckSeqLen")

    (outputs, final_state) = _dynamic_rnn_loop(
        cell, inputs, state, parallel_iterations=parallel_iterations,
        swap_memory=swap_memory, sequence_length=sequence_length)

    # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth].
    # If we are performing batch-major calculations, transpose output back
    # to shape [batch, time, depth]
    if not time_major:
      outputs = array_ops.transpose(outputs, [1, 0, 2])  # (T,B,D) => (B,T,D)

    return (outputs, final_state)


def _dynamic_rnn_loop(
    cell, inputs, initial_state, parallel_iterations, swap_memory,
    sequence_length=None):
  """Internal implementation of Dynamic RNN.

  Args:
    cell: An instance of RNNCell.
    inputs: A `Tensor` of shape [time, batch_size, depth].
    initial_state: A `Tensor` of shape [batch_size, depth].
    parallel_iterations: Positive Python int.
    swap_memory: A Python boolean
    sequence_length: (optional) An `int32` `Tensor` of shape [batch_size].

  Returns:
    Tuple (final_outputs, final_state).
    final_outputs:
      A `Tensor` of shape [time, batch_size, depth]`.
    final_state:
      A `Tensor` of shape [batch_size, depth].

  Raises:
    ValueError: If the input depth cannot be inferred via shape inference
      from the inputs.
  """
  state = initial_state
  assert isinstance(parallel_iterations, int), "parallel_iterations must be int"

  # Construct an initial output
  input_shape = array_ops.shape(inputs)
  (time_steps, batch_size, _) = array_ops.unpack(input_shape, 3)

  inputs_got_shape = inputs.get_shape().with_rank(3)
  (const_time_steps, const_batch_size, const_depth) = inputs_got_shape.as_list()

  if const_depth is None:
    raise ValueError(
        "Input size (depth of inputs) must be accessible via shape inference, "
        "but saw value None.")

  # Prepare dynamic conditional copying of state & output
  zero_output = array_ops.zeros(
      array_ops.pack([batch_size, cell.output_size]), inputs.dtype)
  if sequence_length is not None:
    min_sequence_length = math_ops.reduce_min(sequence_length)
    max_sequence_length = math_ops.reduce_max(sequence_length)

  time = array_ops.constant(0, dtype=dtypes.int32, name="time")

  with ops.op_scope([], "dynamic_rnn") as scope:
    base_name = scope

  output_ta = tensor_array_ops.TensorArray(
      dtype=inputs.dtype, size=time_steps,
      tensor_array_name=base_name + "output")

  input_ta = tensor_array_ops.TensorArray(
      dtype=inputs.dtype, size=time_steps,
      tensor_array_name=base_name + "input")

  input_ta = input_ta.unpack(inputs)

  def _time_step(time, state, output_ta_t):
    """Take a time step of the dynamic RNN.

    Args:
      time: int32 scalar Tensor.
      state: Vector.
      output_ta_t: `TensorArray`, the output with existing flow.

    Returns:
      The tuple (time + 1, new_state, output_ta_t with updated flow).
    """

    input_t = input_ta.read(time)
    # Restore some shape information
    input_t.set_shape([const_batch_size, const_depth])

    call_cell = lambda: cell(input_t, state)

    if sequence_length is not None:
      (output, new_state) = _rnn_step(
          time, sequence_length, min_sequence_length, max_sequence_length,
          zero_output, state, call_cell)
    else:
      (output, new_state) = call_cell()

    output_ta_t = output_ta_t.write(time, output)

    return (time + 1, new_state, output_ta_t)

  (unused_final_time, final_state, output_final_ta) = control_flow_ops.While(
      cond=lambda time, _1, _2: time < time_steps,
      body=_time_step,
      loop_vars=(time, state, output_ta),
      parallel_iterations=parallel_iterations,
      swap_memory=swap_memory)

  final_outputs = output_final_ta.pack()
  # Restore some shape information
  final_outputs.set_shape([
      const_time_steps, const_batch_size, cell.output_size])

  return (final_outputs, final_state)