aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/parsing_ops.py
blob: 860a046da0c5f7127f512f6ee1e84c354e7f5252 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""Parsing Ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re

from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import common_shapes
from tensorflow.python.ops import constant_op
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_parsing_ops
from tensorflow.python.ops import logging_ops
from tensorflow.python.ops import math_ops
# pylint: disable=wildcard-import,undefined-variable
from tensorflow.python.ops.gen_parsing_ops import *


ops.NoGradient("DecodeRaw")
ops.NoGradient("StringToNumber")


# pylint: disable=protected-access
def parse_example(serialized,
                  names=None,
                  sparse_keys=None,
                  sparse_types=None,
                  dense_keys=None,
                  dense_types=None,
                  dense_defaults=None,
                  dense_shapes=None,
                  name="ParseExample"):
  """Parses `Example` protos.

  Parses a number of serialized [`Example`]
  (https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/example/example.proto)
  protos given in `serialized`.

  `names` may contain descriptive names for the corresponding serialized protos.
  These may be useful for debugging purposes, but they have no effect on the
  output. If not `None`, `names` must be the same length as `serialized`.

  This op parses serialized examples into a dictionary mapping keys to `Tensor`
  and `SparseTensor` objects respectively, depending on whether the keys appear
  in `sparse_keys` or `dense_keys`.

  The key `dense_keys[j]` is mapped to a `Tensor` of type `dense_types[j]` and
  of shape `(serialized.size(),) + dense_shapes[j]`.

  `dense_defaults` provides defaults for values referenced using `dense_keys`.
  If a key is not present in this dictionary, the corresponding dense `Feature`
  is required in all elements of `serialized`.

  `dense_shapes[j]` provides the shape of each `Feature` entry referenced by
  `dense_keys[j]`. The number of elements in the `Feature` corresponding to
  `dense_key[j]` must always have `np.prod(dense_shapes[j])` entries. The
  returned `Tensor` for `dense_key[j]` has shape `[N] + dense_shape[j]`, where
  `N` is the number of `Example`s in `serialized`.

  The key `sparse_keys[j]` is mapped to a `SparseTensor` of type
  `sparse_types[j]`. The `SparseTensor` represents a ragged matrix.
  Its indices are `[batch, index]` where `batch` is the batch entry the value
  is from, and `index` is the value's index in the list of values associated
  with that feature and example.

  Examples:

  For example, if one expects a `tf.float32` sparse feature `ft` and three
  serialized `Example`s are provided:

  ```
  serialized = [
    features:
      { feature: [ key: { "ft" value: float_list: { value: [1.0, 2.0] } } ] },
    features:
      { feature: [] },
    features:
      { feature: [ key: { "ft" value: float_list: { value: [3.0] } } ] }
  ]
  ```

  then the output will look like:

  ```
  {"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],
                      values=[1.0, 2.0, 3.0],
                      shape=(3, 2)) }
  ```

  Given two `Example` input protos in `serialized`:

  ```
  [
    features: {
      feature: { key: "kw" value: { bytes_list: { value: [ "knit", "big" ] } } }
      feature: { key: "gps" value: { float_list: { value: [] } } }
    },
    features: {
      feature: { key: "kw" value: { bytes_list: { value: [ "emmy" ] } } }
      feature: { key: "dank" value: { int64_list: { value: [ 42 ] } } }
      feature: { key: "gps" value: { } }
    }
  ]
  ```

  And arguments

  ```
    names: ["input0", "input1"],
    sparse_keys: ["kw", "dank", "gps"]
    sparse_types: [DT_STRING, DT_INT64, DT_FLOAT]
  ```

  Then the output is a dictionary:

  ```python
  {
    "kw": SparseTensor(
        indices=[[0, 0], [0, 1], [1, 0]],
        values=["knit", "big", "emmy"]
        shape=[2, 2]),
    "dank": SparseTensor(
        indices=[[1, 0]],
        values=[42],
        shape=[2, 1]),
    "gps": SparseTensor(
        indices=[],
        values=[],
        shape=[2, 0]),
  }
  ```

  For dense results in two serialized `Example`s:

  ```
  [
    features: {
      feature: { key: "age" value: { int64_list: { value: [ 0 ] } } }
      feature: { key: "gender" value: { bytes_list: { value: [ "f" ] } } }
     },
     features: {
      feature: { key: "age" value: { int64_list: { value: [] } } }
      feature: { key: "gender" value: { bytes_list: { value: [ "f" ] } } }
    }
  ]
  ```

  We can use arguments:

  ```
  names: ["input0", "input1"],
  dense_keys: np.array(["age", "gender"]),
  dense_types: [tf.int64, tf.string],
  dense_defaults: {
    "age": -1  # "age" defaults to -1 if missing
               # "gender" has no specified default so it's required
  }
  dense_shapes: [(1,), (1,)],  # age, gender, label, weight
  ```

  And the expected output is:

  ```python
  {
    "age": [[0], [-1]],
    "gender": [["f"], ["f"]],
  }
  ```

  Args:
    serialized: A vector (1-D Tensor) of strings, a batch of binary
      serialized `Example` protos.
    names: A vector (1-D Tensor) of strings (optional), the names of
      the serialized protos.
    sparse_keys: A list of string keys in the examples' features.
      The results for these keys will be returned as `SparseTensor` objects.
    sparse_types: A list of `DTypes` of the same length as `sparse_keys`.
      Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`),
      and `tf.string` (`BytesList`) are supported.
    dense_keys: A list of string keys in the examples' features.
      The results for these keys will be returned as `Tensor`s
    dense_types: A list of DTypes of the same length as `dense_keys`.
      Only `tf.float32` (`FloatList`), `tf.int64` (`Int64List`),
      and `tf.string` (`BytesList`) are supported.
    dense_defaults: A dict mapping string keys to `Tensor`s.
      The keys of the dict must match the dense_keys of the feature.
    dense_shapes: A list of tuples with the same length as `dense_keys`.
      The shape of the data for each dense feature referenced by `dense_keys`.
    name: A name for this operation (optional).

  Returns:
    A `dict` mapping keys to `Tensor`s and `SparseTensor`s.

  Raises:
    ValueError: If sparse and dense key sets intersect, or input lengths do not
      match up.
  """
  with ops.op_scope([serialized, names], name, "parse_example"):
    names = [] if names is None else names
    dense_defaults = {} if dense_defaults is None else dense_defaults
    sparse_keys = [] if sparse_keys is None else sparse_keys
    sparse_types = [] if sparse_types is None else sparse_types
    dense_keys = [] if dense_keys is None else dense_keys
    dense_types = [] if dense_types is None else dense_types
    dense_shapes = [
        []] * len(dense_keys) if dense_shapes is None else dense_shapes

    num_dense = len(dense_keys)
    num_sparse = len(sparse_keys)

    if len(dense_shapes) != num_dense:
      raise ValueError("len(dense_shapes) != len(dense_keys): %d vs. %d"
                       % (len(dense_shapes), num_dense))
    if len(dense_types) != num_dense:
      raise ValueError("len(dense_types) != len(num_dense): %d vs. %d"
                       % (len(dense_types), num_dense))
    if len(sparse_types) != num_sparse:
      raise ValueError("len(sparse_types) != len(sparse_keys): %d vs. %d"
                       % (len(sparse_types), num_sparse))
    if num_dense + num_sparse == 0:
      raise ValueError("Must provide at least one sparse key or dense key")
    if not set(dense_keys).isdisjoint(set(sparse_keys)):
      raise ValueError(
          "Dense and sparse keys must not intersect; intersection: %s" %
          set(dense_keys).intersection(set(sparse_keys)))

    dense_defaults_vec = []
    for i, key in enumerate(dense_keys):
      default_value = dense_defaults.get(key)
      if default_value is None:
        default_value = constant_op.constant([], dtype=dense_types[i])
      elif not isinstance(default_value, ops.Tensor):
        key_name = "key_" + re.sub("[^A-Za-z0-9_.\\-/]", "_", key)
        default_value = ops.convert_to_tensor(
            default_value, dtype=dense_types[i], name=key_name)
        default_value = array_ops.reshape(default_value, dense_shapes[i])

      dense_defaults_vec.append(default_value)

    dense_shapes = [tensor_util.MakeTensorShapeProto(shape)
                    if isinstance(shape, (list, tuple)) else shape
                    for shape in dense_shapes]

    outputs = gen_parsing_ops._parse_example(
        serialized=serialized,
        names=names,
        dense_defaults=dense_defaults_vec,
        sparse_keys=sparse_keys,
        sparse_types=sparse_types,
        dense_keys=dense_keys,
        dense_shapes=dense_shapes,
        name=name)

    (sparse_indices, sparse_values, sparse_shapes, dense_values) = outputs

    sparse_tensors = [ops.SparseTensor(ix, val, shape) for (ix, val, shape)
                      in zip(sparse_indices, sparse_values, sparse_shapes)]

    return dict(
        zip(sparse_keys + dense_keys, sparse_tensors + dense_values))


def parse_single_example(serialized,  # pylint: disable=invalid-name
                         names=None,
                         sparse_keys=None,
                         sparse_types=None,
                         dense_keys=None,
                         dense_types=None,
                         dense_defaults=None,
                         dense_shapes=None,
                         name="ParseSingleExample"):
  """Parses a single `Example` proto.

  Similar to `parse_example`, except:

  For dense tensors, the returned `Tensor` is identical to the output of
  `parse_example`, except there is no batch dimension, the output shape is the
  same as the shape given in `dense_shape`.

  For `SparseTensor`s, the first (batch) column of the indices matrix is removed
  (the indices matrix is a column vector), the values vector is unchanged, and
  the first (batch_size) entry of the shape vector is removed (it is now a
  single element vector).

  See also `parse_example`.

  Args:
    serialized: A scalar string Tensor, a single serialized Example.
      See parse_example documentation for more details.
    names: (Optional) A scalar string Tensor, the associated name.
      See parse_example documentation for more details.
    sparse_keys: See parse_example documentation for more details.
    sparse_types: See parse_example documentation for more details.
    dense_keys: See parse_example documentation for more details.
    dense_types: See parse_example documentation for more details.
    dense_defaults: See parse_example documentation for more details.
    dense_shapes: See parse_example documentation for more details.
    name: A name for this operation (optional).

  Returns:
    A dictionary mapping keys to Tensors and SparseTensors.

  Raises:
    ValueError: if "scalar" or "names" have known shapes, and are not scalars.
  """
  with ops.op_scope([serialized, names], name, "parse_single_example"):
    serialized = ops.convert_to_tensor(serialized)
    serialized_shape = serialized.get_shape()
    if serialized_shape.ndims is not None:
      if serialized_shape.ndims != 0:
        raise ValueError("Input serialized must be a scalar")
    else:
      serialized = control_flow_ops.with_dependencies(
          [logging_ops.Assert(
              math_ops.equal(array_ops.rank(serialized), 0),
              ["Input serialized must be a scalar"],
              name="SerializedIsScalar")],
          serialized,
          name="SerializedDependencies")
    serialized = array_ops.expand_dims(serialized, 0)
    if names is not None:
      names = ops.convert_to_tensor(names)
      names_shape = names.get_shape()
      if names_shape.ndims is not None:
        if names_shape.ndims != 0:
          raise ValueError("Input names must be a scalar")
      else:
        names = control_flow_ops.with_dependencies(
            [logging_ops.Assert(
                math_ops.equal(array_ops.rank(names), 0),
                ["Input names must be a scalar"],
                name="NamesIsScalar")],
            names,
            name="NamesDependencies")
      names = array_ops.expand_dims(names, 0)

    outputs = parse_example(serialized,
                            names=names,
                            sparse_keys=sparse_keys,
                            sparse_types=sparse_types,
                            dense_keys=dense_keys,
                            dense_types=dense_types,
                            dense_defaults=dense_defaults,
                            dense_shapes=dense_shapes,
                            name=name)
    if dense_keys is not None:
      for d in dense_keys:
        outputs[d] = array_ops.squeeze(outputs[d], [0], name="Squeeze_%s" % d)
    if sparse_keys is not None:
      for s in sparse_keys:
        outputs[s] = ops.SparseTensor(
            array_ops.slice(outputs[s].indices,
                            [0, 1], [-1, -1], name="Slice_Indices_%s" % s),
            outputs[s].values,
            array_ops.slice(outputs[s].shape,
                            [1], [-1], name="Squeeze_Shape_%s" % s))
    return outputs


@ops.RegisterShape("ParseExample")
def _ParseExampleShape(op):
  """Shape function for the ParseExample op."""
  input_shape = op.inputs[0].get_shape().with_rank(1)
  num_sparse = op.get_attr("Nsparse")
  num_dense = op.get_attr("Ndense")
  dense_shapes = op.get_attr("dense_shapes")
  sparse_index_shapes = [
      tensor_shape.matrix(None, 2) for _ in range(num_sparse)]
  sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_sparse)]
  sparse_shape_shapes = [tensor_shape.vector(2) for _ in range(num_sparse)]
  assert num_dense == len(dense_shapes)
  dense_shapes = [
      input_shape.concatenate((d.size for d in dense_shape.dim))
      for dense_shape in dense_shapes]
  return (sparse_index_shapes + sparse_value_shapes + sparse_shape_shapes +
          dense_shapes)


ops.RegisterShape("StringToNumber")(
    common_shapes.unchanged_shape)


@ops.RegisterShape("DecodeRaw")
def _DecodeRawShape(op):
  """Shape function for the DecodeRaw op."""
  # NOTE(mrry): Last dimension is data-dependent.
  return [op.inputs[0].get_shape().concatenate([None])]


@ops.RegisterShape("DecodeCSV")
def _DecodeCSVShape(op):
  """Shape function for the DecodeCSV op."""
  input_shape = op.inputs[0].get_shape()
  # Optionally check that all of other inputs are scalar or empty.
  for default_input in op.inputs[1:]:
    default_input_shape = default_input.get_shape().with_rank(1)
    if default_input_shape[0] > 1:
      raise ValueError(
          "Shape of a default must be a length-0 or length-1 vector.")
  return [input_shape] * len(op.outputs)