aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/math_grad.py
blob: d220fe3cce186d731803d3d1c9587d9fe9ea3a28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gradients for operators defined in math_ops.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gen_math_ops
from tensorflow.python.ops import math_ops


def _safe_shape_div(x, y):
  """Divides `x / y` assuming `x, y >= 0`, treating `0 / 0 = 0`."""
  return x // math_ops.maximum(y, 1)


@ops.RegisterGradient("ArgMax")
def _ArgMaxGrad(op, grad):
  del op, grad
  return [None, None]


@ops.RegisterGradient("Sum")
def _SumGrad(op, grad):
  """Gradient for Sum."""
  # Fast path for when reducing to a scalar and ndims is known: adds only
  # Reshape and Tile ops (and possibly a Shape).
  input_0_shape = op.inputs[0]._shape_tuple()  # pylint: disable=protected-access
  if input_0_shape is not None:
    axes = tensor_util.constant_value(op.inputs[1])
    if axes is not None:
      rank = len(input_0_shape)
      if np.array_equal(axes, np.arange(rank)):  # Reduce all dims.
        if context.executing_eagerly():
          ctx = context.context()
          new_shape = ctx.ones_rank_cache().get(rank)
          if new_shape is None:
            new_shape = constant_op.constant([1] * rank, dtype=dtypes.int32)
            ctx.ones_rank_cache().put(rank, new_shape)
        else:
          new_shape = [1] * rank
        grad = array_ops.reshape(grad, new_shape)
        # If shape is not fully defined (but rank is), we use Shape.
        if None not in input_0_shape:
          input_shape = constant_op.constant(input_0_shape, dtype=dtypes.int32)
        else:
          input_shape = array_ops.shape(op.inputs[0])
        return [array_ops.tile(grad, input_shape), None]

  input_shape = array_ops.shape(op.inputs[0])
  # TODO(apassos) remove this once device placement for eager ops makes more
  # sense.
  with ops.colocate_with(input_shape):
    output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
    tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)
  return [array_ops.tile(grad, tile_scaling), None]


def _MinOrMaxGrad(op, grad):
  """Gradient for Min or Max. Amazingly it's precisely the same code."""
  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  y = op.outputs[0]
  y = array_ops.reshape(y, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)

  # Compute the number of selected (maximum or minimum) elements in each
  # reduction dimension. If there are multiple minimum or maximum elements
  # then the gradient will be divided between them.
  indicators = math_ops.cast(math_ops.equal(y, op.inputs[0]), grad.dtype)
  num_selected = array_ops.reshape(
      math_ops.reduce_sum(indicators, op.inputs[1]), output_shape_kept_dims)

  return [math_ops.div(indicators, num_selected) * grad, None]


@ops.RegisterGradient("Max")
def _MaxGrad(op, grad):
  """Gradient for Max."""
  return _MinOrMaxGrad(op, grad)


@ops.RegisterGradient("Min")
def _MinGrad(op, grad):
  return _MinOrMaxGrad(op, grad)


@ops.RegisterGradient("Mean")
def _MeanGrad(op, grad):
  """Gradient for Mean."""
  sum_grad = _SumGrad(op, grad)[0]
  input_shape = op.inputs[0]._shape_tuple()  # pylint: disable=protected-access
  output_shape = op.outputs[0]._shape_tuple()  # pylint: disable=protected-access
  if (input_shape is not None and output_shape is not None and
      None not in input_shape and None not in output_shape):
    input_size = np.prod(input_shape)
    output_size = np.prod(output_shape)
    factor = input_size // max(output_size, 1)
    factor = constant_op.constant(factor, dtype=sum_grad.dtype)
  else:
    input_shape = array_ops.shape(op.inputs[0])
    output_shape = array_ops.shape(op.outputs[0])
    factor = _safe_shape_div(
        math_ops.reduce_prod(input_shape), math_ops.reduce_prod(output_shape))
  return math_ops.truediv(sum_grad, math_ops.cast(factor, sum_grad.dtype)), None


@ops.RegisterGradient("Prod")
def _ProdGrad(op, grad):
  """Gradient for Prod."""
  # The gradient can be expressed by dividing the product by each entry of the
  # input tensor, but this approach can't deal with zeros in the input.
  # Here, we avoid this problem by composing the output as a product of two
  # cumprod operations.

  input_shape = array_ops.shape(op.inputs[0])
  # Reshape reduction indices for the case where the parameter is a scalar
  reduction_indices = array_ops.reshape(op.inputs[1], [-1])

  # Expand grad to full input shape
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)
  grad = array_ops.tile(grad, tile_scaling)

  # Pack all reduced dimensions into a single one, so we can perform the
  # cumprod ops. If the reduction dims list is empty, it defaults to float32,
  # so we need to cast here.  We put all the shape-related ops on CPU to avoid
  # copying back and forth, and since listdiff is CPU only.
  with ops.device("/cpu:0"):
    rank = array_ops.rank(op.inputs[0])
    reduction_indices = (reduction_indices + rank) % rank
    reduced = math_ops.cast(reduction_indices, dtypes.int32)
    idx = math_ops.range(0, rank)
    other, _ = array_ops.setdiff1d(idx, reduced)
    perm = array_ops.concat([reduced, other], 0)
    reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced))
    other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
  permuted = array_ops.transpose(op.inputs[0], perm)
  permuted_shape = array_ops.shape(permuted)
  reshaped = array_ops.reshape(permuted, (reduced_num, other_num))

  # Calculate product, leaving out the current entry
  left = math_ops.cumprod(reshaped, axis=0, exclusive=True)
  right = math_ops.cumprod(reshaped, axis=0, exclusive=True, reverse=True)
  y = array_ops.reshape(left * right, permuted_shape)

  # Invert the transpose and reshape operations.
  # Make sure to set the statically known shape information through a reshape.
  out = grad * array_ops.transpose(y, array_ops.invert_permutation(perm))
  return array_ops.reshape(out, input_shape), None


@ops.RegisterGradient("SegmentSum")
def _SegmentSumGrad(op, grad):
  """Gradient for SegmentSum."""
  return array_ops.gather(grad, op.inputs[1]), None


@ops.RegisterGradient("SegmentMean")
def _SegmentMeanGrad(op, grad):
  """Gradient for SegmentMean."""
  input_rank = array_ops.rank(op.inputs[0])
  ones_shape = array_ops.concat([
      array_ops.shape(op.inputs[1]),
      array_ops.fill(array_ops.expand_dims(input_rank - 1, 0), 1)
  ], 0)
  ones = array_ops.fill(ones_shape, constant_op.constant(1, dtype=grad.dtype))
  scaled_grad = math_ops.div(grad, math_ops.segment_sum(ones, op.inputs[1]))
  return array_ops.gather(scaled_grad, op.inputs[1]), None


@ops.RegisterGradient("SparseSegmentSum")
def _SparseSegmentSumGrad(op, grad):
  """Gradient for SparseSegmentSum."""
  input_rows = array_ops.shape(op.inputs[0])[0]
  return (math_ops.unsorted_segment_sum(
      array_ops.gather(grad, op.inputs[2]), op.inputs[1], input_rows), None,
          None)


@ops.RegisterGradient("SparseSegmentSumWithNumSegments")
def _SparseSegmentSumWithNumSegmentsGrad(op, grad):
  """Gradient for SparseSegmentSumWithNumSegments."""
  input_rows = array_ops.shape(op.inputs[0])[0]
  return (math_ops.unsorted_segment_sum(
      array_ops.gather(grad, op.inputs[2]), op.inputs[1], input_rows), None,
          None, None)


@ops.RegisterGradient("SparseSegmentMean")
def _SparseSegmentMeanGrad(op, grad):
  """Gradient for SparseSegmentMean."""
  dim0 = array_ops.shape(op.inputs[0])[0]
  return (math_ops.sparse_segment_mean_grad(grad, op.inputs[1], op.inputs[2],
                                            dim0), None, None)


@ops.RegisterGradient("SparseSegmentMeanWithNumSegments")
def _SparseSegmentMeanWithNumSegmentsGrad(op, grad):
  """Gradient for SparseSegmentMeanWithNumSegments."""
  dim0 = array_ops.shape(op.inputs[0])[0]
  return (math_ops.sparse_segment_mean_grad(grad, op.inputs[1], op.inputs[2],
                                            dim0), None, None, None)


@ops.RegisterGradient("SparseSegmentSqrtN")
def _SparseSegmentSqrtNGrad(op, grad):
  """Gradient for SparseSegmentSqrtN."""
  dim0 = array_ops.shape(op.inputs[0])[0]
  return (math_ops.sparse_segment_sqrt_n_grad(grad, op.inputs[1], op.inputs[2],
                                              dim0), None, None)


@ops.RegisterGradient("SparseSegmentSqrtNWithNumSegments")
def _SparseSegmentSqrtNWithNumSegmentsGrad(op, grad):
  """Gradient for SparseSegmentSqrtNWithNumSegments."""
  dim0 = array_ops.shape(op.inputs[0])[0]
  return (math_ops.sparse_segment_sqrt_n_grad(grad, op.inputs[1], op.inputs[2],
                                              dim0), None, None, None)


def _SegmentMinOrMaxGrad(op, grad):
  """ Gradient for SegmentMin and SegmentMax. """
  zeros = array_ops.zeros_like(op.inputs[0], dtype=op.inputs[0].dtype)
  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  num_selected = math_ops.segment_sum(math_ops.cast(is_selected, grad.dtype),
                                      op.inputs[1])
  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])
  return array_ops.where(is_selected, gathered_grads, zeros), None


@ops.RegisterGradient("SegmentMin")
def _SegmentMinGrad(op, grad):
  """Gradient for SegmentMin."""
  return _SegmentMinOrMaxGrad(op, grad)


@ops.RegisterGradient("SegmentMax")
def _SegmentMaxGrad(op, grad):
  """Gradient for SegmentMax."""
  return _SegmentMinOrMaxGrad(op, grad)


def _GatherDropNegatives(params, ids, zero_clipped_indices=None,
                         is_positive=None):
  """ Helper function for unsorted segment ops. Gathers params for
      positive segment ids and gathers 0 for inputs with negative segment id.
      Also returns the clipped indices and a boolean mask with the same shape
      as ids where a positive id is masked as true. With this, the latter two
      can be passed as arguments to this function to reuse them.
  """
  if zero_clipped_indices is None:
    zero_clipped_indices = math_ops.maximum(ids, array_ops.zeros_like(ids))
  gathered = array_ops.gather(params, zero_clipped_indices)
  if is_positive is None:
    is_positive = math_ops.greater_equal(ids, 0)
    # tf.where(condition, x, y) requires condition to have the same shape as x
    # and y.
    # todo(philjd): remove this if tf.where supports broadcasting (#9284)
    for _ in range(gathered.shape.ndims - is_positive.shape.ndims):
      is_positive = array_ops.expand_dims(is_positive, -1)
    is_positive = (is_positive &
                   array_ops.ones_like(gathered, dtype=dtypes.bool))
  # replace gathered params of negative indices with 0
  zero_slice = array_ops.zeros_like(gathered)
  return (array_ops.where(is_positive, gathered, zero_slice),
          zero_clipped_indices, is_positive)


def _UnsortedSegmentMinOrMaxGrad(op, grad):
  """ Gradient for UnsortedSegmentMin and UnsortedSegmentMax. """
  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs, zero_clipped_indices, is_positive = \
      _GatherDropNegatives(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  is_selected = math_ops.logical_and(is_selected, is_positive)
  num_selected = math_ops.unsorted_segment_sum(
      math_ops.cast(is_selected, grad.dtype), op.inputs[1], op.inputs[2])
  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads, _, _ = _GatherDropNegatives(weighted_grads, None,
                                              zero_clipped_indices,
                                              is_positive)
  zeros = array_ops.zeros_like(gathered_grads)
  return array_ops.where(is_selected, gathered_grads, zeros), None, None


@ops.RegisterGradient("UnsortedSegmentSum")
def _UnsortedSegmentSumGrad(op, grad):
  """Gradient for UnsortedSegmentSum."""
  return _GatherDropNegatives(grad, op.inputs[1])[0], None, None


@ops.RegisterGradient("UnsortedSegmentMax")
def _UnsortedSegmentMaxGrad(op, grad):
  """ Gradient for UnsortedSegmentMax. """
  return _UnsortedSegmentMinOrMaxGrad(op, grad)


@ops.RegisterGradient("UnsortedSegmentMin")
def _UnsortedSegmentMinGrad(op, grad):
  """ Gradient for UnsortedSegmentMin. """
  return _UnsortedSegmentMinOrMaxGrad(op, grad)


@ops.RegisterGradient("UnsortedSegmentProd")
def _UnsortedSegmentProdGrad(op, grad):
  """ Gradient for UnsortedSegmentProd.
  The gradient can be expressed for each segment by dividing the segment's
  product by each element of the segment input tensor, but this approach can't
  deal with zeros in the input.
  Unlike reduce_prod we can't use cumsum here as individual segments may have
  a different number of elements. Therefore we consider three cases:
  1) A segment input contains no zeros and we can safely divide by the input
     tensor.
  2) A segment contains exactly one zero. Then the gradient of each input of
     the segment is zero except for the 0-input, there the gradient is
     the product of the remaining segment entries.
  3) A segment contains at least two zeros. The gradient is zero for all
     segment inputs.
  """
  # Note that unsorted_segment_sum will filter out the negative indices,
  # so we don't need to do a logical_and with is_positive here
  is_zero = math_ops.equal(op.inputs[0], 0)
  num_zeros = gen_math_ops.unsorted_segment_sum(
      math_ops.cast(is_zero, dtype=dtypes.int32), op.inputs[1], op.inputs[2])
  # handle case 3 and set the gradient to 0 for segments with more than one
  # 0 as input
  grad = array_ops.where(math_ops.greater(num_zeros, 1),
                         array_ops.zeros_like(grad), grad)
  # replace all zeros with ones and compute the unsorted_segment_prod
  non_zero_data = array_ops.where(is_zero, array_ops.ones_like(op.inputs[0]),
                                  op.inputs[0])
  non_zero_prod = gen_math_ops.unsorted_segment_prod(
      non_zero_data, op.inputs[1], op.inputs[2])
  # clip the indices for gather to be positive
  zero_clipped_indices = math_ops.maximum(op.inputs[1],
                                          array_ops.zeros_like(op.inputs[1]))
  gathered_prod = array_ops.gather(op.outputs[0], zero_clipped_indices)
  gathered_non_zero_prod = array_ops.gather(non_zero_prod,
                                            zero_clipped_indices)
  prod_divided_by_el = gathered_prod / op.inputs[0]  # May contain nan/inf.
  # Now fetch the individual results for segments containing 0 and those that
  # don't. is_zero will also fetch results for entries with negative index
  # but the following gather_drop_negatives sets the corresponding entry in
  # grad to 0 for these
  partial_derivative = array_ops.where(is_zero, gathered_non_zero_prod,
                                       prod_divided_by_el)
  gathered_grad = _GatherDropNegatives(grad, op.inputs[1],
                                       zero_clipped_indices)[0]
  return gathered_grad * partial_derivative, None, None


@ops.RegisterGradient("Abs")
def _AbsGrad(op, grad):
  x = op.inputs[0]
  return grad * math_ops.sign(x)


@ops.RegisterGradient("Neg")
def _NegGrad(_, grad):
  """Returns -grad."""
  return -grad


@ops.RegisterGradient("Inv")
def _InvGrad(op, grad):
  """Returns -grad * (1 / x^2)."""
  y = op.outputs[0]  # y = 1 / x
  return gen_math_ops.reciprocal_grad(y, grad)


@ops.RegisterGradient("Reciprocal")
def _ReciprocalGrad(op, grad):
  """Returns -grad * (1 / x^2)."""
  y = op.outputs[0]  # y = 1 / x
  return gen_math_ops.reciprocal_grad(y, grad)


@ops.RegisterGradient("InvGrad")
def _InvGradGrad(op, grad):
  b = op.inputs[1]
  # op.output[0]: y = -b * conj(a)^2
  with ops.control_dependencies([grad]):
    ca = math_ops.conj(op.inputs[0])
    cg = math_ops.conj(grad)
    return cg * -2.0 * b * ca, gen_math_ops.reciprocal_grad(ca, grad)


@ops.RegisterGradient("ReciprocalGrad")
def _ReciprocalGradGrad(op, grad):
  b = op.inputs[1]
  # op.output[0]: y = -b * conj(a)^2
  with ops.control_dependencies([grad]):
    ca = math_ops.conj(op.inputs[0])
    cg = math_ops.conj(grad)
    return cg * -2.0 * b * ca, gen_math_ops.reciprocal_grad(ca, grad)


@ops.RegisterGradient("Square")
def _SquareGrad(op, grad):
  x = op.inputs[0]
  # Added control dependencies to prevent 2*x from being computed too early.
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    y = constant_op.constant(2.0, dtype=x.dtype)
    return math_ops.multiply(grad, math_ops.multiply(x, y))


@ops.RegisterGradient("Sqrt")
def _SqrtGrad(op, grad):
  y = op.outputs[0]  # y = x^(1/2)
  return gen_math_ops.sqrt_grad(y, grad)


@ops.RegisterGradient("SqrtGrad")
def _SqrtGradGrad(op, grad):
  a = op.inputs[0]
  y = op.outputs[0]  # y = 0.5 * b / conj(a)
  with ops.control_dependencies([grad]):
    ga = grad / a
    return -math_ops.conj(ga) * y, 0.5 * ga


@ops.RegisterGradient("Rsqrt")
def _RsqrtGrad(op, grad):
  """Returns -0.5 * grad * conj(y)^3."""
  y = op.outputs[0]  # y = x^(-1/2)
  return gen_math_ops.rsqrt_grad(y, grad)


@ops.RegisterGradient("RsqrtGrad")
def _RsqrtGradGrad(op, grad):
  """Returns backprop gradient for f(a,b) = -0.5 * b * conj(a)^3."""
  a = op.inputs[0]  # a = x^{-1/2}
  b = op.inputs[1]  # backprop gradient for a
  with ops.control_dependencies([grad]):
    ca = math_ops.conj(a)
    cg = math_ops.conj(grad)
    grad_a = -1.5 * cg * b * math_ops.square(ca)
    grad_b = gen_math_ops.rsqrt_grad(ca, grad)
    return grad_a, grad_b


@ops.RegisterGradient("Exp")
def _ExpGrad(op, grad):
  """Returns grad * exp(x)."""
  y = op.outputs[0]  # y = e^x
  with ops.control_dependencies([grad]):
    y = math_ops.conj(y)
    return grad * y


@ops.RegisterGradient("Expm1")
def _Expm1Grad(op, grad):
  """Returns grad * exp(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    y = math_ops.exp(x)
    return grad * y


@ops.RegisterGradient("Log")
def _LogGrad(op, grad):
  """Returns grad * (1/x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.reciprocal(x)


@ops.RegisterGradient("Log1p")
def _Log1pGrad(op, grad):
  """Returns grad * (1/(1 + x))."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.reciprocal(1 + x)


@ops.RegisterGradient("Sinh")
def _SinhGrad(op, grad):
  """Returns grad * cosh(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.cosh(x)


@ops.RegisterGradient("Cosh")
def _CoshGrad(op, grad):
  """Returns grad * sinh(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.sinh(x)


@ops.RegisterGradient("Tanh")
def _TanhGrad(op, grad):
  """Returns grad * (1 - tanh(x) * tanh(x))."""
  y = op.outputs[0]  # y = tanh(x)
  with ops.control_dependencies([grad]):
    y = math_ops.conj(y)
    return gen_math_ops.tanh_grad(y, grad)


@ops.RegisterGradient("Asinh")
def _AsinhGrad(op, grad):
  """Returns grad * 1/cosh(y)."""
  y = op.outputs[0]
  with ops.control_dependencies([grad]):
    y = math_ops.conj(y)
    return grad / math_ops.cosh(y)


@ops.RegisterGradient("Acosh")
def _AcoshGrad(op, grad):
  """Returns grad * 1/sinh(y)."""
  y = op.outputs[0]
  with ops.control_dependencies([grad]):
    y = math_ops.conj(y)
    return grad / math_ops.sinh(y)


@ops.RegisterGradient("Atanh")
def _AtanhGrad(op, grad):
  """Returns grad * 1/ (1 - x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    inv = math_ops.reciprocal(math_ops.subtract(one, x2))
    return grad * inv


@ops.RegisterGradient("TanhGrad")
def _TanhGradGrad(op, grad):
  with ops.control_dependencies([grad]):
    a = math_ops.conj(op.inputs[0])
    b = math_ops.conj(op.inputs[1])
    return grad * -2.0 * b * a, gen_math_ops.tanh_grad(a, grad)


@ops.RegisterGradient("Erf")
def _ErfGrad(op, grad):
  """Returns grad * 2/sqrt(pi) * exp(-x**2)."""
  x = op.inputs[0]
  two_over_root_pi = constant_op.constant(2 / np.sqrt(np.pi), dtype=grad.dtype)
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * two_over_root_pi * math_ops.exp(-math_ops.square(x))


@ops.RegisterGradient("Erfc")
def _ErfcGrad(op, grad):
  """Returns -grad * 2/sqrt(pi) * exp(-x**2)."""
  x = op.inputs[0]
  minus_two_over_root_pi = constant_op.constant(
      -2 / np.sqrt(np.pi), dtype=grad.dtype)
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * minus_two_over_root_pi * math_ops.exp(-math_ops.square(x))


@ops.RegisterGradient("Lgamma")
def _LgammaGrad(op, grad):
  """Returns grad * digamma(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.digamma(x)


@ops.RegisterGradient("Digamma")
def _DigammaGrad(op, grad):
  """Compute gradient of the digamma function with respect to its argument."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.polygamma(array_ops.constant(1, dtype=x.dtype), x)


@ops.RegisterGradient("Igamma")
def _IgammaGrad(op, grad):
  """Returns gradient of igamma(a, x) with respect to x."""
  # TODO(ebrevdo): Perhaps add the derivative w.r.t. a
  a = op.inputs[0]
  x = op.inputs[1]
  sa = array_ops.shape(a)
  sx = array_ops.shape(x)
  # pylint: disable=protected-access
  unused_ra, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
  # pylint: enable=protected-access

  # Perform operations in log space before summing, because Gamma(a)
  # and Gamma'(a) can grow large.
  partial_x = math_ops.exp(-x + (a - 1) * math_ops.log(x) - math_ops.lgamma(a))
  # TODO(b/36815900): Mark None return values as NotImplemented
  return (None, array_ops.reshape(
      math_ops.reduce_sum(partial_x * grad, rx), sx))


@ops.RegisterGradient("Igammac")
def _IgammacGrad(op, grad):
  """Returns gradient of igammac(a, x) = 1 - igamma(a, x) w.r.t. x."""
  _, igamma_grad_x = _IgammaGrad(op, grad)
  return None, -igamma_grad_x


@ops.RegisterGradient("Betainc")
def _BetaincGrad(op, grad):
  """Returns gradient of betainc(a, b, x) with respect to x."""
  # TODO(ebrevdo): Perhaps add the derivative w.r.t. a, b
  a, b, x = op.inputs

  # two cases: x is a scalar and a/b are same-shaped tensors, or vice
  # versa; so its sufficient to check against shape(a).
  sa = array_ops.shape(a)
  sx = array_ops.shape(x)
  # pylint: disable=protected-access
  _, rx = gen_array_ops._broadcast_gradient_args(sa, sx)
  # pylint: enable=protected-access

  # Perform operations in log space before summing, because terms
  # can grow large.
  log_beta = (
      gen_math_ops.lgamma(a) + gen_math_ops.lgamma(b) -
      gen_math_ops.lgamma(a + b))
  partial_x = math_ops.exp((b - 1) * math_ops.log(1 - x) +
                           (a - 1) * math_ops.log(x) - log_beta)

  # TODO(b/36815900): Mark None return values as NotImplemented
  return (
      None,  # da
      None,  # db
      array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))


@ops.RegisterGradient("Zeta")
def _ZetaGrad(op, grad):
  """Returns gradient of zeta(x, q) with respect to x and q."""
  # TODO(tillahoffmann): Add derivative with respect to x
  x = op.inputs[0]
  q = op.inputs[1]
  # Broadcast gradients
  sx = array_ops.shape(x)
  sq = array_ops.shape(q)
  # pylint: disable=protected-access
  unused_rx, rq = gen_array_ops._broadcast_gradient_args(sx, sq)
  # pylint: enable=protected-access
  # Evaluate gradient
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    q = math_ops.conj(q)
    partial_q = -x * math_ops.zeta(x + 1, q)
    # TODO(b/36815900): Mark None return values as NotImplemented
    return (None,
            array_ops.reshape(math_ops.reduce_sum(partial_q * grad, rq), sq))


@ops.RegisterGradient("Polygamma")
def _PolygammaGrad(op, grad):
  """Returns gradient of psi(n, x) with respect to n and x."""
  # TODO(tillahoffmann): Add derivative with respect to n
  n = op.inputs[0]
  x = op.inputs[1]
  # Broadcast gradients
  sn = array_ops.shape(n)
  sx = array_ops.shape(x)
  # pylint: disable=protected-access
  unused_rn, rx = gen_array_ops._broadcast_gradient_args(sn, sx)
  # pylint: enable=protected-access
  # Evaluate gradient
  with ops.control_dependencies([grad]):
    n = math_ops.conj(n)
    x = math_ops.conj(x)
    partial_x = math_ops.polygamma(n + 1, x)
    # TODO(b/36815900): Mark None return values as NotImplemented
    return (None,
            array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx))


@ops.RegisterGradient("Sigmoid")
def _SigmoidGrad(op, grad):
  """Returns grad * sigmoid(x) * (1 - sigmoid(x))."""
  y = op.outputs[0]  # y = sigmoid(x)
  with ops.control_dependencies([grad]):
    y = math_ops.conj(y)
    return gen_math_ops.sigmoid_grad(y, grad)


@ops.RegisterGradient("SigmoidGrad")
def _SigmoidGradGrad(op, grad):
  with ops.control_dependencies([grad]):
    a = math_ops.conj(op.inputs[0])
    b = math_ops.conj(op.inputs[1])
    gb = grad * b
    return gb - 2.0 * gb * a, gen_math_ops.sigmoid_grad(a, grad)


@ops.RegisterGradient("Sign")
def _SignGrad(op, _):
  """Returns 0."""
  x = op.inputs[0]
  return array_ops.zeros(array_ops.shape(x), dtype=x.dtype)


@ops.RegisterGradient("Sin")
def _SinGrad(op, grad):
  """Returns grad * cos(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return grad * math_ops.cos(x)


@ops.RegisterGradient("Cos")
def _CosGrad(op, grad):
  """Returns grad * -sin(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    return -grad * math_ops.sin(x)


@ops.RegisterGradient("Tan")
def _TanGrad(op, grad):
  """Returns grad * 1/sec^2(x)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    secx = math_ops.reciprocal(math_ops.cos(x))
    secx2 = math_ops.square(secx)
    return grad * secx2


@ops.RegisterGradient("Asin")
def _AsinGrad(op, grad):
  """Returns grad * 1/sqrt(1-x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    den = math_ops.sqrt(math_ops.subtract(one, x2))
    inv = math_ops.reciprocal(den)
    return grad * inv


@ops.RegisterGradient("Acos")
def _AcosGrad(op, grad):
  """Returns grad * -1/sqrt(1-x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    den = math_ops.sqrt(math_ops.subtract(one, x2))
    inv = math_ops.reciprocal(den)
    return -grad * inv


@ops.RegisterGradient("Atan")
def _AtanGrad(op, grad):
  """Returns grad * 1/ (1 + x^2)."""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    x = math_ops.conj(x)
    x2 = math_ops.square(x)
    one = constant_op.constant(1, dtype=grad.dtype)
    inv = math_ops.reciprocal(math_ops.add(one, x2))
    return grad * inv


@ops.RegisterGradient("Atan2")
def _Atan2Grad(op, grad):
  """Returns grad * x / (x^2 + y^2), grad * -y / (x^2 + y^2)."""
  y = op.inputs[0]
  x = op.inputs[1]
  with ops.control_dependencies([grad]):
    grad_inv = grad / (math_ops.square(x) + math_ops.square(y))
    return x * grad_inv, -y * grad_inv


@ops.RegisterGradient("AddN")
def _AddNGrad(op, grad):
  """Copies the gradient to all inputs."""
  # Not broadcasting.
  return [grad] * len(op.inputs)


def _ShapesFullySpecifiedAndEqual(x, y, grad):
  # pylint: disable=protected-access
  x_shape = x._shape_tuple()
  y_shape = y._shape_tuple()
  grad_shape = grad._shape_tuple()
  # pylint: enable=protected-access
  return (x_shape == y_shape and x_shape == grad_shape and
          x_shape is not None and None not in x_shape)


@ops.RegisterGradient("Add")
def _AddGrad(op, grad):
  """Gradient for Add."""
  x = op.inputs[0]
  y = op.inputs[1]
  if (isinstance(grad, ops.Tensor) and
      _ShapesFullySpecifiedAndEqual(x, y, grad)):
    return grad, grad
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  return (array_ops.reshape(math_ops.reduce_sum(grad, rx), sx),
          array_ops.reshape(math_ops.reduce_sum(grad, ry), sy))


@ops.RegisterGradient("Sub")
def _SubGrad(op, grad):
  """Gradient for Sub."""
  x = op.inputs[0]
  y = op.inputs[1]
  if (isinstance(grad, ops.Tensor) and
      _ShapesFullySpecifiedAndEqual(x, y, grad)):
    return grad, -grad
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  return (array_ops.reshape(math_ops.reduce_sum(grad, rx), sx),
          array_ops.reshape(-math_ops.reduce_sum(grad, ry), sy))


@ops.RegisterGradient("Mul")
def _MulGrad(op, grad):
  """The gradient of scalar multiplication."""
  x = op.inputs[0]
  y = op.inputs[1]
  # pylint: disable=protected-access
  if (isinstance(grad, ops.Tensor) and
      _ShapesFullySpecifiedAndEqual(x, y, grad) and
      grad.dtype in (dtypes.int32, dtypes.float32)):
    return gen_math_ops.mul(grad, y), gen_math_ops.mul(grad, x)
  assert x.dtype.base_dtype == y.dtype.base_dtype, (x.dtype, " vs. ", y.dtype)
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  return (array_ops.reshape(
      math_ops.reduce_sum(gen_math_ops.mul(grad, y), rx), sx),
          array_ops.reshape(
              math_ops.reduce_sum(gen_math_ops.mul(x, grad), ry), sy))
  # pylint: enable=protected-access


@ops.RegisterGradient("Div")
def _DivGrad(op, grad):
  """The gradient for the Div operator."""
  x = op.inputs[0]
  y = op.inputs[1]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  return (array_ops.reshape(math_ops.reduce_sum(math_ops.div(grad, y), rx), sx),
          array_ops.reshape(
              math_ops.reduce_sum(grad * math_ops.div(math_ops.div(-x, y), y),
                                  ry), sy))


@ops.RegisterGradient("FloorDiv")
def _FloorDivGrad(_, unused_grad):
  """The gradient for the FloorDiv operator."""
  return None, None


@ops.RegisterGradient("FloorMod")
def _FloorModGrad(op, grad):
  """Returns grad * (1, -floor(x/y))."""
  x = math_ops.conj(op.inputs[0])
  y = math_ops.conj(op.inputs[1])

  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  floor_xy = math_ops.floor_div(x, y)
  gx = array_ops.reshape(math_ops.reduce_sum(grad, rx), sx)
  gy = array_ops.reshape(
      math_ops.reduce_sum(grad * math_ops.negative(floor_xy), ry), sy)
  return gx, gy


@ops.RegisterGradient("TruncateDiv")
def _TruncateDivGrad(_, unused_grad):
  return None, None


@ops.RegisterGradient("RealDiv")
def _RealDivGrad(op, grad):
  """RealDiv op gradient."""
  x = op.inputs[0]
  y = op.inputs[1]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  return (array_ops.reshape(
      math_ops.reduce_sum(math_ops.realdiv(grad, y), rx), sx),
          array_ops.reshape(
              math_ops.reduce_sum(
                  grad * math_ops.realdiv(math_ops.realdiv(-x, y), y), ry), sy))


@ops.RegisterGradient("Pow")
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy


def _MaximumMinimumGrad(op, grad, selector_op):
  """Factor out the code for the gradient of Maximum or Minimum."""
  x = op.inputs[0]
  y = op.inputs[1]
  gdtype = grad.dtype
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  gradshape = array_ops.shape(grad)
  zeros = array_ops.zeros(gradshape, gdtype)
  xmask = selector_op(x, y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  xgrad = array_ops.where(xmask, grad, zeros)
  ygrad = array_ops.where(xmask, zeros, grad)
  gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx)
  gy = array_ops.reshape(math_ops.reduce_sum(ygrad, ry), sy)
  return (gx, gy)


@ops.RegisterGradient("Maximum")
def _MaximumGrad(op, grad):
  """Returns grad*(x > y, x <= y) with type of grad."""
  return _MaximumMinimumGrad(op, grad, math_ops.greater_equal)


@ops.RegisterGradient("Minimum")
def _MinimumGrad(op, grad):
  """Returns grad*(x < y, x >= y) with type of grad."""
  return _MaximumMinimumGrad(op, grad, math_ops.less_equal)


@ops.RegisterGradient("SquaredDifference")
def _SquaredDifferenceGrad(op, grad):
  """Returns the gradient for (x-y)^2."""
  x = op.inputs[0]
  y = op.inputs[1]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  with ops.control_dependencies([grad]):
    # The parens ensure that if grad is IndexedSlices, it'll get multiplied by
    # Tensor (not a number like 2.0) which causes it to convert to Tensor.
    x_grad = math_ops.scalar_mul(2.0, grad) * (x - y)
  return (array_ops.reshape(math_ops.reduce_sum(x_grad, rx), sx),
          -array_ops.reshape(math_ops.reduce_sum(x_grad, ry), sy))


# Logical operations have no gradients.
ops.NotDifferentiable("Less")
ops.NotDifferentiable("LessEqual")
ops.NotDifferentiable("Greater")
ops.NotDifferentiable("GreaterEqual")
ops.NotDifferentiable("Equal")
ops.NotDifferentiable("ApproximateEqual")
ops.NotDifferentiable("NotEqual")
ops.NotDifferentiable("LogicalAnd")
ops.NotDifferentiable("LogicalOr")
ops.NotDifferentiable("LogicalNot")


@ops.RegisterGradient("Select")
def _SelectGrad(op, grad):
  c = op.inputs[0]
  x = op.inputs[1]
  zeros = array_ops.zeros_like(x)
  return (None, array_ops.where(c, grad, zeros), array_ops.where(
      c, zeros, grad))


@ops.RegisterGradient("MatMul")
def _MatMulGrad(op, grad):
  """Gradient for MatMul."""

  t_a = op.get_attr("transpose_a")
  t_b = op.get_attr("transpose_b")
  a = math_ops.conj(op.inputs[0])
  b = math_ops.conj(op.inputs[1])
  if not t_a and not t_b:
    grad_a = gen_math_ops.mat_mul(grad, b, transpose_b=True)
    grad_b = gen_math_ops.mat_mul(a, grad, transpose_a=True)
  elif not t_a and t_b:
    grad_a = gen_math_ops.mat_mul(grad, b)
    grad_b = gen_math_ops.mat_mul(grad, a, transpose_a=True)
  elif t_a and not t_b:
    grad_a = gen_math_ops.mat_mul(b, grad, transpose_b=True)
    grad_b = gen_math_ops.mat_mul(a, grad)
  elif t_a and t_b:
    grad_a = gen_math_ops.mat_mul(b, grad, transpose_a=True, transpose_b=True)
    grad_b = gen_math_ops.mat_mul(grad, a, transpose_a=True, transpose_b=True)
  return grad_a, grad_b


@ops.RegisterGradient("SparseMatMul")
def _SparseMatMulGrad(op, grad):
  """Gradient for SparseMatMul."""

  t_a = op.get_attr("transpose_a")
  t_b = op.get_attr("transpose_b")
  is_sparse = {
      op.inputs[0]: op.get_attr("a_is_sparse"),
      op.inputs[1]: op.get_attr("b_is_sparse"),
      # Use heuristic to figure out if grad might be sparse
      grad: not context.executing_eagerly() and (grad.op.type == "ReluGrad")
  }

  def _SparseMatMul(t1, t2, out_dtype, transpose_a=False, transpose_b=False):
    """Helper function to create SparseMatMul op."""

    assert t1 in is_sparse and t2 in is_sparse
    t1_sparse = is_sparse[t1]
    t2_sparse = is_sparse[t2]
    if transpose_b:
      t2 = array_ops.transpose(t2)
      transpose_b = False
    prod = math_ops.matmul(
        t1,
        t2,
        transpose_a=transpose_a,
        transpose_b=transpose_b,
        a_is_sparse=t1_sparse,
        b_is_sparse=t2_sparse)
    if prod.dtype != out_dtype:
      prod = math_ops.cast(prod, out_dtype)
    return prod

  dtype_a = op.inputs[0].dtype
  dtype_b = op.inputs[1].dtype
  if not t_a and not t_b:
    return (_SparseMatMul(grad, op.inputs[1], dtype_a, transpose_b=True),
            _SparseMatMul(op.inputs[0], grad, dtype_b, transpose_a=True))
  elif not t_a and t_b:
    return (_SparseMatMul(grad, op.inputs[1], dtype_a),
            _SparseMatMul(grad, op.inputs[0], dtype_b, transpose_a=True))
  elif t_a and not t_b:
    return (_SparseMatMul(op.inputs[1], grad, dtype_a, transpose_b=True),
            _SparseMatMul(op.inputs[0], grad, dtype_b))
  elif t_a and t_b:
    return (_SparseMatMul(
        op.inputs[1], grad, dtype_a, transpose_a=True, transpose_b=True),
            _SparseMatMul(
                grad, op.inputs[0], dtype_b, transpose_a=True,
                transpose_b=True))


@ops.RegisterGradient("Floor")
def _FloorGrad(_, unused_grad):
  return [None]


@ops.RegisterGradient("Ceil")
def _CeilGrad(_, unused_grad):
  return [None]


@ops.RegisterGradient("Round")
def _RoundGrad(_, unused_grad):
  return [None]


@ops.RegisterGradient("Rint")
def _RintGrad(_, unused_grad):
  # the gradient of Rint is zero
  return [None]


@ops.RegisterGradient("BatchMatMul")
def _BatchMatMul(op, grad):
  """Returns the gradient of x and y given the gradient of x * y."""
  x = op.inputs[0]
  y = op.inputs[1]
  adj_x = op.get_attr("adj_x")
  adj_y = op.get_attr("adj_y")

  if not adj_x:
    if not adj_y:
      grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=True)
      grad_y = math_ops.matmul(x, grad, adjoint_a=True, adjoint_b=False)
    else:
      grad_x = math_ops.matmul(grad, y, adjoint_a=False, adjoint_b=False)
      grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=False)
  else:
    if not adj_y:
      grad_x = math_ops.matmul(y, grad, adjoint_a=False, adjoint_b=True)
      grad_y = math_ops.matmul(x, grad, adjoint_a=False, adjoint_b=False)
    else:
      grad_x = math_ops.matmul(y, grad, adjoint_a=True, adjoint_b=True)
      grad_y = math_ops.matmul(grad, x, adjoint_a=True, adjoint_b=True)

  return grad_x, grad_y


ops.NotDifferentiable("Range")
ops.NotDifferentiable("LinSpace")


@ops.RegisterGradient("Complex")
def _ComplexGrad(op, grad):
  """Returns the real and imaginary components of 'grad', respectively."""
  x = op.inputs[0]
  y = op.inputs[1]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  return (array_ops.reshape(math_ops.reduce_sum(math_ops.real(grad), rx), sx),
          array_ops.reshape(math_ops.reduce_sum(math_ops.imag(grad), ry), sy))


@ops.RegisterGradient("Real")
def _RealGrad(_, grad):
  """Returns 'grad' as the real part and set the imaginary part 0."""
  zero = constant_op.constant(0, dtype=grad.dtype)
  return math_ops.complex(grad, zero)


@ops.RegisterGradient("Imag")
def _ImagGrad(_, grad):
  """Returns 'grad' as the imaginary part and set the real part 0."""
  zero = constant_op.constant(0, dtype=grad.dtype)
  return math_ops.complex(zero, grad)


@ops.RegisterGradient("Angle")
def _AngleGrad(op, grad):
  """Returns -grad / (Im(x) + iRe(x))"""
  x = op.inputs[0]
  with ops.control_dependencies([grad]):
    re = math_ops.real(x)
    im = math_ops.imag(x)
    z = math_ops.reciprocal(math_ops.complex(im, re))
    zero = constant_op.constant(0, dtype=grad.dtype)
    complex_grad = math_ops.complex(grad, zero)
    return -complex_grad * z


@ops.RegisterGradient("Conj")
def _ConjGrad(_, grad):
  """Returns the complex conjugate of grad."""
  return math_ops.conj(grad)


@ops.RegisterGradient("ComplexAbs")
def _ComplexAbsGrad(op, grad):
  """Returns the gradient of ComplexAbs."""
  # TODO(b/27786104): The cast to complex could be removed once arithmetic
  # supports mixtures of complex64 and real values.
  return (math_ops.complex(grad, array_ops.zeros_like(grad)) * math_ops.sign(
      op.inputs[0]))


@ops.RegisterGradient("Cast")
def _CastGrad(op, grad):
  t = [
      dtypes.float16, dtypes.float32, dtypes.float64, dtypes.bfloat16,
      dtypes.complex64, dtypes.complex128
  ]
  src_type = op.inputs[0].dtype.base_dtype
  dst_type = grad.dtype.base_dtype
  if src_type in t and dst_type in t:
    return math_ops.cast(grad, src_type)
  else:
    return None


@ops.RegisterGradient("Cross")
def _CrossGrad(op, grad):
  u = op.inputs[0]
  v = op.inputs[1]
  return (math_ops.cross(v, grad), math_ops.cross(grad, u))


@ops.RegisterGradient("Cumsum")
def _CumsumGrad(op, grad):
  axis = op.inputs[1]
  exclusive = op.get_attr("exclusive")
  reverse = op.get_attr("reverse")
  return [
      math_ops.cumsum(grad, axis, exclusive=exclusive, reverse=not reverse),
      None
  ]


@ops.RegisterGradient("Cumprod")
def _CumprodGrad(op, grad):
  x = op.inputs[0]
  axis = op.inputs[1]
  exclusive = op.get_attr("exclusive")
  reverse = op.get_attr("reverse")

  # TODO This fails when x contains 0 and should be fixed
  prod = math_ops.cumprod(x, axis, exclusive=exclusive, reverse=reverse)
  out = math_ops.cumsum(
      prod * grad, axis, exclusive=exclusive, reverse=not reverse)
  return [out / x, None]