aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/linalg_ops.py
blob: d6e7f5f58f20e495e2ba2c8d30ca7cffb6d6f516 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations for linear algebra."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_linalg_ops
from tensorflow.python.ops import math_ops
# go/tf-wildcard-import
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_linalg_ops import *

# pylint: enable=wildcard-import

# Names below are lower_case.
# pylint: disable=invalid-name


def cholesky_solve(chol, rhs, name=None):
  """Solves systems of linear eqns `A X = RHS`, given Cholesky factorizations.

  ```python
  # Solve 10 separate 2x2 linear systems:
  A = ... # shape 10 x 2 x 2
  RHS = ... # shape 10 x 2 x 1
  chol = tf.cholesky(A)  # shape 10 x 2 x 2
  X = tf.cholesky_solve(chol, RHS)  # shape 10 x 2 x 1
  # tf.matmul(A, X) ~ RHS
  X[3, :, 0]  # Solution to the linear system A[3, :, :] x = RHS[3, :, 0]

  # Solve five linear systems (K = 5) for every member of the length 10 batch.
  A = ... # shape 10 x 2 x 2
  RHS = ... # shape 10 x 2 x 5
  ...
  X[3, :, 2]  # Solution to the linear system A[3, :, :] x = RHS[3, :, 2]
  ```

  Args:
    chol:  A `Tensor`.  Must be `float32` or `float64`, shape is `[..., M, M]`.
      Cholesky factorization of `A`, e.g. `chol = tf.cholesky(A)`.
      For that reason, only the lower triangular parts (including the diagonal)
      of the last two dimensions of `chol` are used.  The strictly upper part is
      assumed to be zero and not accessed.
    rhs:  A `Tensor`, same type as `chol`, shape is `[..., M, K]`.
    name:  A name to give this `Op`.  Defaults to `cholesky_solve`.

  Returns:
    Solution to `A x = rhs`, shape `[..., M, K]`.
  """
  # To solve C C^* x = rhs, we
  # 1. Solve C y = rhs for y, thus y = C^* x
  # 2. Solve C^* x = y for x
  with ops.name_scope(name, 'cholesky_solve', [chol, rhs]):
    y = gen_linalg_ops.matrix_triangular_solve(
        chol, rhs, adjoint=False, lower=True)
    x = gen_linalg_ops.matrix_triangular_solve(
        chol, y, adjoint=True, lower=True)
    return x


def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype=dtypes.float32,
        name=None):
  """Construct an identity matrix, or a batch of matrices.

  ```python
  # Construct one identity matrix.
  tf.eye(2)
  ==> [[1., 0.],
       [0., 1.]]

  # Construct a batch of 3 identity matricies, each 2 x 2.
  # batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
  batch_identity = tf.eye(2, batch_shape=[3])

  # Construct one 2 x 3 "identity" matrix
  tf.eye(2, num_columns=3)
  ==> [[ 1.,  0.,  0.],
       [ 0.,  1.,  0.]]
  ```

  Args:
    num_rows: Non-negative `int32` scalar `Tensor` giving the number of rows
      in each batch matrix.
    num_columns: Optional non-negative `int32` scalar `Tensor` giving the number
      of columns in each batch matrix.  Defaults to `num_rows`.
    batch_shape:  `int32` `Tensor`.  If provided, returned `Tensor` will have
      leading batch dimensions of this shape.
    dtype:  The type of an element in the resulting `Tensor`
    name:  A name for this `Op`.  Defaults to "eye".

  Returns:
    A `Tensor` of shape `batch_shape + [num_rows, num_columns]`
  """
  with ops.name_scope(
      name, default_name='eye', values=[num_rows, num_columns, batch_shape]):

    batch_shape = [] if batch_shape is None else batch_shape
    batch_shape = ops.convert_to_tensor(
        batch_shape, name='shape', dtype=dtypes.int32)

    if num_columns is None:
      diag_size = num_rows
    else:
      diag_size = math_ops.minimum(num_rows, num_columns)
    diag_shape = array_ops.concat((batch_shape, [diag_size]), 0)
    diag_ones = array_ops.ones(diag_shape, dtype=dtype)

    if num_columns is None:
      return array_ops.matrix_diag(diag_ones)
    else:
      shape = array_ops.concat((batch_shape, [num_rows, num_columns]), 0)
      zero_matrix = array_ops.zeros(shape, dtype=dtype)
      return array_ops.matrix_set_diag(zero_matrix, diag_ones)


def matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None):
  r"""Solves one or more linear least-squares problems.

  `matrix` is a tensor of shape `[..., M, N]` whose inner-most 2 dimensions
  form `M`-by-`N` matrices. Rhs is a tensor of shape `[..., M, K]` whose
  inner-most 2 dimensions form `M`-by-`K` matrices.   The computed output is a
  `Tensor` of shape `[..., N, K]` whose inner-most 2 dimensions form `M`-by-`K`
  matrices that solve the equations
  `matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]` in the least squares
  sense.

  Below we will use the following notation for each pair of matrix and
  right-hand sides in the batch:

  `matrix`=\\(A \in \Re^{m \times n}\\),
  `rhs`=\\(B  \in \Re^{m \times k}\\),
  `output`=\\(X  \in \Re^{n \times k}\\),
  `l2_regularizer`=\\(\lambda\\).

  If `fast` is `True`, then the solution is computed by solving the normal
  equations using Cholesky decomposition. Specifically, if \\(m \ge n\\) then
  \\(X = (A^T A + \lambda I)^{-1} A^T B\\), which solves the least-squares
  problem \\(X = \mathrm{argmin}_{Z \in \Re^{n \times k}} ||A Z - B||_F^2 +
  \lambda ||Z||_F^2\\). If \\(m \lt n\\) then `output` is computed as
  \\(X = A^T (A A^T + \lambda I)^{-1} B\\), which (for \\(\lambda = 0\\)) is
  the minimum-norm solution to the under-determined linear system, i.e.
  \\(X = \mathrm{argmin}_{Z \in \Re^{n \times k}} ||Z||_F^2 \\), subject to
  \\(A Z = B\\). Notice that the fast path is only numerically stable when
  \\(A\\) is numerically full rank and has a condition number
  \\(\mathrm{cond}(A) \lt \frac{1}{\sqrt{\epsilon_{mach}}}\\) or\\(\lambda\\)
  is sufficiently large.

  If `fast` is `False` an algorithm based on the numerically robust complete
  orthogonal decomposition is used. This computes the minimum-norm
  least-squares solution, even when \\(A\\) is rank deficient. This path is
  typically 6-7 times slower than the fast path. If `fast` is `False` then
  `l2_regularizer` is ignored.

  Args:
    matrix: `Tensor` of shape `[..., M, N]`.
    rhs: `Tensor` of shape `[..., M, K]`.
    l2_regularizer: 0-D `double` `Tensor`. Ignored if `fast=False`.
    fast: bool. Defaults to `True`.
    name: string, optional name of the operation.

  Returns:
    output: `Tensor` of shape `[..., N, K]` whose inner-most 2 dimensions form
      `M`-by-`K` matrices that solve the equations
      `matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]` in the least
      squares sense.
  """
  # pylint: disable=protected-access
  return gen_linalg_ops._matrix_solve_ls(
      matrix, rhs, l2_regularizer, fast=fast, name=name)


def self_adjoint_eig(tensor, name=None):
  """Computes the eigen decomposition of a batch of self-adjoint matrices.

  Computes the eigenvalues and eigenvectors of the innermost N-by-N matrices
  in `tensor` such that
  `tensor[...,:,:] * v[..., :,i] = e[..., i] * v[...,:,i]`, for i=0...N-1.

  Args:
    tensor: `Tensor` of shape `[..., N, N]`. Only the lower triangular part of
      each inner inner matrix is referenced.
    name: string, optional name of the operation.

  Returns:
    e: Eigenvalues. Shape is `[..., N]`.
    v: Eigenvectors. Shape is `[..., N, N]`. The columns of the inner most
      matrices contain eigenvectors of the corresponding matrices in `tensor`
  """
  # pylint: disable=protected-access
  e, v = gen_linalg_ops._self_adjoint_eig_v2(tensor, compute_v=True, name=name)
  return e, v


def self_adjoint_eigvals(tensor, name=None):
  """Computes the eigenvalues of one or more self-adjoint matrices.

  Args:
    tensor: `Tensor` of shape `[..., N, N]`.
    name: string, optional name of the operation.

  Returns:
    e: Eigenvalues. Shape is `[..., N]`. The vector `e[..., :]` contains the `N`
      eigenvalues of `tensor[..., :, :]`.
  """
  # pylint: disable=protected-access
  e, _ = gen_linalg_ops._self_adjoint_eig_v2(tensor, compute_v=False, name=name)
  return e


def svd(tensor, full_matrices=False, compute_uv=True, name=None):
  """Computes the singular value decompositions of one or more matrices.

  Computes the SVD of each inner matrix in `tensor` such that
  `tensor[..., :, :] = u[..., :, :] * diag(s[..., :, :]) * transpose(v[..., :,
  :])`

  ```prettyprint
  # a is a tensor.
  # s is a tensor of singular values.
  # u is a tensor of left singular vectors.
  #v is a tensor of right singular vectors.
  s, u, v = svd(a)
  s = svd(a, compute_uv=False)
  ```

  Args:
    tensor: `Tensor` of shape `[..., M, N]`. Let `P` be the minimum of `M` and
      `N`.
    full_matrices: If true, compute full-sized `u` and `v`. If false
      (the default), compute only the leading `P` singular vectors.
      Ignored if `compute_uv` is `False`.
    compute_uv: If `True` then left and right singular vectors will be
      computed and returned in `u` and `v`, respectively. Otherwise, only the
      singular values will be computed, which can be significantly faster.
    name: string, optional name of the operation.

  Returns:
    s: Singular values. Shape is `[..., P]`.
    u: Right singular vectors. If `full_matrices` is `False` (default) then
      shape is `[..., M, P]`; if `full_matrices` is `True` then shape is
      `[..., M, M]`. Not returned if `compute_uv` is `False`.
    v: Left singular vectors. If `full_matrices` is `False` (default) then
      shape is `[..., N, P]`. If `full_matrices` is `True` then shape is
      `[..., N, N]`. Not returned if `compute_uv` is `False`.

  @compatibility(numpy)
  Mostly equivalent to numpy.linalg.svd, except that the order of output
  arguments here is `s`, `u`, `v` when `compute_uv` is `True`, as opposed to
  `u`, `s`, `v` for numpy.linalg.svd.
  @end_compatibility
  """
  # pylint: disable=protected-access
  s, u, v = gen_linalg_ops._svd(
      tensor, compute_uv=compute_uv, full_matrices=full_matrices)
  # pylint: enable=protected-access
  if compute_uv:
    return math_ops.real(s), u, v
  else:
    return math_ops.real(s)


# pylint: disable=redefined-builtin
def norm(tensor, ord='euclidean', axis=None, keep_dims=False, name=None):
  r"""Computes the norm of vectors, matrices, and tensors.

  This function can compute several different vector norms (the 1-norm, the
  Euclidean or 2-norm, the inf-norm, and in general the p-norm for p > 0) and
  matrix norms (Frobenius, 1-norm, and inf-norm).

  Args:
    tensor: `Tensor` of types `float32`, `float64`, `complex64`, `complex128`
    ord: Order of the norm. Supported values are 'fro', 'euclidean', `0`,
      `1`, `2`, `np.inf` and any positive real number yielding the corresponding
      p-norm. Default is 'euclidean' which is equivalent to Frobenius norm if
      `tensor` is a matrix and equivalent to 2-norm for vectors.
      Some restrictions apply:
        a) The Frobenius norm `fro` is not defined for vectors,
        b) If axis is a 2-tuple (matrix norm), only 'euclidean', 'fro', `1`,
           `np.inf` are supported.
      See the description of `axis` on how to compute norms for a batch of
      vectors or matrices stored in a tensor.
    axis: If `axis` is `None` (the default), the input is considered a vector
      and a single vector norm is computed over the entire set of values in the
      tensor, i.e. `norm(tensor, ord=ord)` is equivalent to
      `norm(reshape(tensor, [-1]), ord=ord)`.
      If `axis` is a Python integer, the input is considered a batch of vectors,
      and `axis` determines the axis in `tensor` over which to compute vector
      norms.
      If `axis` is a 2-tuple of Python integers it is considered a batch of
      matrices and `axis` determines the axes in `tensor` over which to compute
      a matrix norm.
      Negative indices are supported. Example: If you are passing a tensor that
      can be either a matrix or a batch of matrices at runtime, pass
      `axis=[-2,-1]` instead of `axis=None` to make sure that matrix norms are
      computed.
    keep_dims: If True, the axis indicated in `axis` are kept with size 1.
      Otherwise, the dimensions in `axis` are removed from the output shape.
    name: The name of the op.

  Returns:
    output: A `Tensor` of the same type as tensor, containing the vector or
      matrix norms. If `keep_dims` is True then the rank of output is equal to
      the rank of `tensor`. Otherwise, if `axis` is none the output is a scalar,
      if `axis` is an integer, the rank of `output` is one less than the rank
      of `tensor`, if `axis` is a 2-tuple the rank of `output` is two less
      than the rank of `tensor`.

  Raises:
    ValueError: If `ord` or `axis` is invalid.

  @compatibility(numpy)
  Mostly equivalent to numpy.linalg.norm.
  Not supported: ord <= 0, 2-norm for matrices, nuclear norm.
  Other differences:
    a) If axis is `None`, treats the flattened `tensor` as a vector
     regardless of rank.
    b) Explicitly supports 'euclidean' norm as the default, including for
     higher order tensors.
  @end_compatibility
  """

  is_matrix_norm = ((isinstance(axis, tuple) or isinstance(axis, list)) and
                    len(axis) == 2)
  if is_matrix_norm:
    axis = tuple(axis)
    if (not isinstance(axis[0], int) or not isinstance(axis[1], int) or
        axis[0] == axis[1]):
      raise ValueError(
          "'axis' must be None, an integer, or a tuple of 2 unique integers")
    # TODO(rmlarsen): Implement matrix 2-norm using tf.svd().
    supported_matrix_norms = ['euclidean', 'fro', 1, np.inf]
    if ord not in supported_matrix_norms:
      raise ValueError("'ord' must be a supported matrix norm in %s, got %s" %
                       (supported_matrix_norms, ord))
  else:
    if not (isinstance(axis, int) or axis is None):
      raise ValueError(
          "'axis' must be None, an integer, or a tuple of 2 unique integers")

    supported_vector_norms = ['euclidean', 1, 2, np.inf]
    if (not np.isreal(ord) or ord <= 0) and ord not in supported_vector_norms:
      raise ValueError("'ord' must be a supported vector norm, got %s" % ord)
    if axis is not None:
      axis = (axis,)

  with ops.name_scope(name, 'norm', [tensor]):
    tensor = ops.convert_to_tensor(tensor)
    if ord in ['fro', 'euclidean', 2, 2.0]:
      # TODO(rmlarsen): Move 2-norm to a separate clause once we support it for
      # matrices.
      result = math_ops.sqrt(
          math_ops.reduce_sum(
              math_ops.square(tensor), axis, keep_dims=True))
    else:
      result = math_ops.abs(tensor)
      if ord == 1:
        sum_axis = None if axis is None else axis[0]
        result = math_ops.reduce_sum(result, sum_axis, keep_dims=True)
        if is_matrix_norm:
          result = math_ops.reduce_max(result, axis[-1], keep_dims=True)
      elif ord == np.inf:
        if is_matrix_norm:
          result = math_ops.reduce_sum(result, axis[1], keep_dims=True)
        max_axis = None if axis is None else axis[0]
        result = math_ops.reduce_max(result, max_axis, keep_dims=True)
      else:
        # General p-norms (positive p only)
        result = math_ops.pow(math_ops.reduce_sum(
            math_ops.pow(result, ord), axis, keep_dims=True),
                              1.0 / ord)
    if not keep_dims:
      result = array_ops.squeeze(result, axis)
    return result


# pylint: enable=invalid-name,redefined-builtin