aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/linalg_grad.py
blob: 13a32c83d99363e687f7e2365a91c8e453c81c7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gradients for operators defined in linalg_ops.py.

Useful reference for derivative formulas is
An extended collection of matrix derivative results for forward and reverse
mode algorithmic differentiation by Mike Giles:
http://eprints.maths.ox.ac.uk/1079/1/NA-08-01.pdf

A detailed derivation of formulas for backpropagating through spectral layers
(SVD and Eig) by Ionescu, Vantzos & Sminchisescu:
https://arxiv.org/pdf/1509.07838v4.pdf
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.linalg import linalg_impl as _linalg


@ops.RegisterGradient("MatrixInverse")
def _MatrixInverseGrad(op, grad):
  """Gradient for MatrixInverse."""
  ainv = op.outputs[0]
  return -math_ops.matmul(
      ainv, math_ops.matmul(grad, ainv, adjoint_b=True), adjoint_a=True)


@ops.RegisterGradient("MatrixDeterminant")
def _MatrixDeterminantGrad(op, grad):
  """Gradient for MatrixDeterminant."""
  a = op.inputs[0]
  c = op.outputs[0]
  a_adj_inv = linalg_ops.matrix_inverse(a, adjoint=True)
  multipliers = array_ops.reshape(grad * c,
                                  array_ops.concat([array_ops.shape(c), [1, 1]],
                                                   0))
  return multipliers * a_adj_inv


@ops.RegisterGradient("Cholesky")
def _CholeskyGrad(op, grad):
  """Gradient for Cholesky."""

  # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1}
  l = op.outputs[0]
  num_rows = array_ops.shape(l)[-1]
  batch_shape = array_ops.shape(l)[:-2]
  l_inverse = linalg_ops.matrix_triangular_solve(l,
                                                 linalg_ops.eye(
                                                     num_rows,
                                                     batch_shape=batch_shape,
                                                     dtype=l.dtype))

  middle = math_ops.matmul(l, grad, adjoint_a=True)
  middle = array_ops.matrix_set_diag(middle,
                                     0.5 * array_ops.matrix_diag_part(middle))
  middle = array_ops.matrix_band_part(middle, -1, 0)

  grad_a = math_ops.matmul(
      math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse)

  grad_a += _linalg.adjoint(grad_a)
  return grad_a * 0.5


@ops.RegisterGradient("Qr")
def _QrGrad(op, dq, dr):
  """Gradient for Qr."""
  q, r = op.outputs
  if q.dtype.is_complex:
    raise NotImplementedError("QrGrad not implemented for dtype: %s" % q.dtype)
  if (r.shape.ndims is None or r.shape.as_list()[-2] is None or
      r.shape.as_list()[-1] is None):
    raise NotImplementedError("QrGrad not implemented with dynamic shapes.")
  if r.shape[-2].value != r.shape[-1].value:
    raise NotImplementedError("QrGrad not implemented when ncols > nrows "
                              "or full_matrices is true and ncols != nrows.")

  qdq = math_ops.matmul(q, dq, adjoint_a=True)
  qdq_ = qdq - _linalg.adjoint(qdq)
  rdr = math_ops.matmul(r, dr, adjoint_b=True)
  rdr_ = rdr - _linalg.adjoint(rdr)
  tril = array_ops.matrix_band_part(qdq_ + rdr_, -1, 0)

  def _TriangularSolve(x, r):
    """Equiv to matmul(x, adjoint(matrix_inverse(r))) if r is upper-tri."""
    return _linalg.adjoint(
        linalg_ops.matrix_triangular_solve(
            r, _linalg.adjoint(x), lower=False, adjoint=False))

  grad_a = math_ops.matmul(q, dr + _TriangularSolve(tril, r))
  grad_b = _TriangularSolve(dq - math_ops.matmul(q, qdq), r)
  return grad_a + grad_b


@ops.RegisterGradient("MatrixSolve")
def _MatrixSolveGrad(op, grad):
  """Gradient for MatrixSolve."""
  a = op.inputs[0]
  adjoint_a = op.get_attr("adjoint")
  c = op.outputs[0]
  grad_b = linalg_ops.matrix_solve(a, grad, adjoint=not adjoint_a)
  if adjoint_a:
    grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True)
  else:
    grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True)
  return (grad_a, grad_b)


@ops.RegisterGradient("MatrixSolveLs")
def _MatrixSolveLsGrad(op, grad):
  """Gradients for MatrixSolveLs."""

  # TODO(rmlarsen): The implementation could be more efficient:
  #   a) Output the Cholesky factorization from forward op instead of
  #      recomputing it here.
  #   b) Implement a symmetric rank-k update op instead of computing
  #      x*z + transpose(x*z). This pattern occurs other places in TensorFlow.

  def _Overdetermined(op, grad):
    """Gradients for the overdetermined case of MatrixSolveLs.

    This is the backprop for the solution to the normal equations of the first
    kind:
       X = F(A, B) = (A^T * A + lambda * I)^{-1} * A^T * B
    which solve the least squares problem
       min ||A * X - B||_F^2 + lambda ||X||_F^2.
    """
    a = op.inputs[0]
    b = op.inputs[1]
    x = op.outputs[0]
    l2_regularizer = math_ops.cast(op.inputs[2], a.dtype.base_dtype)
    # pylint: disable=protected-access
    chol = linalg_ops._RegularizedGramianCholesky(
        a, l2_regularizer=l2_regularizer, first_kind=True)
    # pylint: enable=protected-access
    # Temporary z = (A^T * A + lambda * I)^{-1} * grad.
    z = linalg_ops.cholesky_solve(chol, grad)
    xzt = math_ops.matmul(x, z, adjoint_b=True)
    zx_sym = xzt + array_ops.matrix_transpose(xzt)
    grad_a = -math_ops.matmul(a, zx_sym) + math_ops.matmul(b, z, adjoint_b=True)
    grad_b = math_ops.matmul(a, z)
    return (grad_a, grad_b, None)

  def _Underdetermined(op, grad):
    """Gradients for the underdetermined case of MatrixSolveLs.

    This is the backprop for the solution to the normal equations of the second
    kind:
      X = F(A, B) = A * (A*A^T + lambda*I)^{-1} * B
    that (for lambda=0) solve the least squares problem
      min ||X||_F subject to A*X = B.
    """
    a = op.inputs[0]
    b = op.inputs[1]
    l2_regularizer = math_ops.cast(op.inputs[2], a.dtype.base_dtype)
    # pylint: disable=protected-access
    chol = linalg_ops._RegularizedGramianCholesky(
        a, l2_regularizer=l2_regularizer, first_kind=False)
    # pylint: enable=protected-access
    grad_b = linalg_ops.cholesky_solve(chol, math_ops.matmul(a, grad))
    # Temporary tmp = (A * A^T + lambda * I)^{-1} * B.
    tmp = linalg_ops.cholesky_solve(chol, b)
    a1 = math_ops.matmul(tmp, a, adjoint_a=True)
    a1 = -math_ops.matmul(grad_b, a1)
    a2 = grad - math_ops.matmul(a, grad_b, adjoint_a=True)
    a2 = math_ops.matmul(tmp, a2, adjoint_b=True)
    grad_a = a1 + a2
    return (grad_a, grad_b, None)

  fast = op.get_attr("fast")
  if fast is False:
    raise ValueError("Gradient not defined for fast=False")
  matrix_shape = op.inputs[0].get_shape()[-2:]
  if matrix_shape.is_fully_defined():
    if matrix_shape[-2] >= matrix_shape[-1]:
      return _Overdetermined(op, grad)
    else:
      return _Underdetermined(op, grad)
  else:
    # We have to defer determining the shape to runtime and use
    # conditional execution of the appropriate graph.
    matrix_shape = array_ops.shape(op.inputs[0])[-2:]
    return control_flow_ops.cond(matrix_shape[-2] >= matrix_shape[-1],
                                 lambda: _Overdetermined(op, grad),
                                 lambda: _Underdetermined(op, grad))


@ops.RegisterGradient("MatrixTriangularSolve")
def _MatrixTriangularSolveGrad(op, grad):
  """Gradient for MatrixTriangularSolve."""
  a = op.inputs[0]
  adjoint_a = op.get_attr("adjoint")
  lower_a = op.get_attr("lower")
  c = op.outputs[0]
  grad_b = linalg_ops.matrix_triangular_solve(
      a, grad, lower=lower_a, adjoint=not adjoint_a)
  if adjoint_a:
    grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True)
  else:
    grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True)
  if lower_a:
    grad_a = array_ops.matrix_band_part(grad_a, -1, 0)
  else:
    grad_a = array_ops.matrix_band_part(grad_a, 0, -1)
  return (grad_a, grad_b)


@ops.RegisterGradient("SelfAdjointEigV2")
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
  """Gradient for SelfAdjointEigV2."""
  e = op.outputs[0]
  compute_v = op.get_attr("compute_v")
  # a = op.inputs[0], which satisfies
  # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
  with ops.control_dependencies([grad_e, grad_v]):
    if compute_v:
      v = op.outputs[1]
      # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
      # Notice that because of the term involving f, the gradient becomes
      # infinite (or NaN in practice) when eigenvalues are not unique.
      # Mathematically this should not be surprising, since for (k-fold)
      # degenerate eigenvalues, the corresponding eigenvectors are only defined
      # up to arbitrary rotation in a (k-dimensional) subspace.
      f = array_ops.matrix_set_diag(
          math_ops.reciprocal(
              array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
          array_ops.zeros_like(e))
      grad_a = math_ops.matmul(
          v,
          math_ops.matmul(
              array_ops.matrix_diag(grad_e) +
              f * math_ops.matmul(v, grad_v, adjoint_a=True),
              v,
              adjoint_b=True))
    else:
      _, v = linalg_ops.self_adjoint_eig(op.inputs[0])
      grad_a = math_ops.matmul(v,
                               math_ops.matmul(
                                   array_ops.matrix_diag(grad_e),
                                   v,
                                   adjoint_b=True))
    # The forward op only depends on the lower triangular part of a, so here we
    # symmetrize and take the lower triangle
    grad_a = array_ops.matrix_band_part(grad_a + _linalg.adjoint(grad_a), -1, 0)
    grad_a = array_ops.matrix_set_diag(grad_a,
                                       0.5 * array_ops.matrix_diag_part(grad_a))
    return grad_a


@ops.RegisterGradient("Svd")
def _SvdGrad(op, grad_s, grad_u, grad_v):
  """Gradient for the singular value decomposition."""

  # The derivation for the compute_uv=False case, and most of
  # the derivation for the full_matrices=True case, are in
  # Giles' paper (see reference at top of file).  A derivation for
  # the full_matrices=False case is available at
  # https://j-towns.github.io/papers/svd-derivative.pdf
  a = op.inputs[0]
  a_shape = a.get_shape().with_rank_at_least(2)

  if op.get_attr("compute_uv"):
    # TODO(rmlarsen): Make this work with complex types.
    if a.dtype.is_complex:
      raise NotImplementedError(
          "SVD gradient is not implemented for complex types and "
          "compute_uv=True.")
    grad_u_shape = grad_u.get_shape().with_rank_at_least(2)
    grad_v_shape = grad_v.get_shape().with_rank_at_least(2)
    m = a_shape[-2].merge_with(grad_u_shape[-2])
    n = a_shape[-1].merge_with(grad_v_shape[-2])
    batch_shape = a_shape[:-2].merge_with(grad_u_shape[:-2]).merge_with(
        grad_v_shape[:-2])
    a_shape = batch_shape.concatenate([m, n])

  m = a_shape[-2].value
  n = a_shape[-1].value
  # TODO(rmlarsen): Make this work with placeholders.
  if m is None or n is None:
    raise NotImplementedError(
        "SVD gradient has not been implemented for input with unknown "
        "inner matrix shape.")

  if not op.get_attr("compute_uv"):
    s, u, v = linalg_ops.svd(a, compute_uv=True, full_matrices=True)
  else:
    s = op.outputs[0]
    u = op.outputs[1]
    v = op.outputs[2]

  use_adjoint = False
  if m > n:
    # Compute the gradient for A^H = V * S^T * U^H, and (implicitly) take the
    # Hermitian transpose of the gradient at the end.
    use_adjoint = True
    m, n = n, m
    u, v = v, u
    grad_u, grad_v = grad_v, grad_u

  with ops.control_dependencies([grad_s, grad_u, grad_v]):
    grad_s_mat = array_ops.matrix_diag(grad_s)
    if not op.get_attr("compute_uv"):
      if use_adjoint:
        grad_a = math_ops.matmul(
            v[..., :, :m], math_ops.matmul(u, grad_s_mat), adjoint_b=True)
      else:
        grad_a = math_ops.matmul(u,
                                 math_ops.matmul(
                                     grad_s_mat, v[..., :, :m], adjoint_b=True))
      grad_a.set_shape(a_shape)
      return grad_a

    if op.get_attr("full_matrices") and abs(m - n) > 1:
      raise NotImplementedError(
          "svd gradient is not implemented for abs(m - n) > 1 "
          "when full_matrices is True")
    s_mat = array_ops.matrix_diag(s)
    s2 = math_ops.square(s)

    # NOTICE: Because of the term involving f, the gradient becomes
    # infinite (or NaN in practice) when singular values are not unique.
    # Mathematically this should not be surprising, since for (k-fold)
    # degenerate singular values, the corresponding singular vectors are
    # only defined up a (k-dimensional) subspace. In practice, this can
    # lead to numerical instability when singular values are close but not
    # exactly equal.
    f = array_ops.matrix_set_diag(
        math_ops.reciprocal(
            array_ops.expand_dims(s2, -2) - array_ops.expand_dims(s2, -1)),
        array_ops.zeros_like(s))
    s_inv_mat = array_ops.matrix_diag(math_ops.reciprocal(s))

    v1 = v[..., :, :m]
    grad_v1 = grad_v[..., :, :m]

    u_gu = math_ops.matmul(u, grad_u, adjoint_a=True)
    v_gv = math_ops.matmul(v1, grad_v1, adjoint_a=True)

    f_u = f * u_gu
    f_v = f * v_gv

    term1_nouv = (
        grad_s_mat + math_ops.matmul(f_u + _linalg.adjoint(f_u), s_mat) +
        math_ops.matmul(s_mat, f_v + _linalg.adjoint(f_v)))

    term1 = math_ops.matmul(u, math_ops.matmul(term1_nouv, v1, adjoint_b=True))

    if m == n:
      grad_a_before_transpose = term1
    else:
      gv1t = array_ops.matrix_transpose(grad_v1)
      gv1t_v1 = math_ops.matmul(gv1t, v1)
      term2_nous = gv1t - math_ops.matmul(gv1t_v1, v1, adjoint_b=True)

      if op.get_attr("full_matrices"):
        v2 = v[..., :, m:n]
        grad_v2 = grad_v[..., :, m:n]

        v1t_gv2 = math_ops.matmul(v1, grad_v2, adjoint_a=True)
        term2_nous -= math_ops.matmul(v1t_gv2, v2, adjoint_b=True)

      u_s_inv = math_ops.matmul(u, s_inv_mat)
      term2 = math_ops.matmul(u_s_inv, term2_nous)

      grad_a_before_transpose = term1 + term2

    if use_adjoint:
      grad_a = array_ops.matrix_transpose(grad_a_before_transpose)
    else:
      grad_a = grad_a_before_transpose

    grad_a.set_shape(a_shape)
    return grad_a