aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py
blob: ca6d3f54051d7bf0ff748804d3cd314b144c2f88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""`LinearOperator` acting like a lower triangular matrix."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.linalg import linalg_impl as linalg
from tensorflow.python.ops.linalg import linear_operator
from tensorflow.python.ops.linalg import linear_operator_util
from tensorflow.python.util.tf_export import tf_export

__all__ = [
    "LinearOperatorLowerTriangular",
]


@tf_export("linalg.LinearOperatorLowerTriangular")
class LinearOperatorLowerTriangular(linear_operator.LinearOperator):
  """`LinearOperator` acting like a [batch] square lower triangular matrix.

  This operator acts like a [batch] lower triangular matrix `A` with shape
  `[B1,...,Bb, N, N]` for some `b >= 0`.  The first `b` indices index a
  batch member.  For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
  an `N x N` matrix.

  `LinearOperatorLowerTriangular` is initialized with a `Tensor` having
  dimensions `[B1,...,Bb, N, N]`. The upper triangle of the last two
  dimensions is ignored.

  ```python
  # Create a 2 x 2 lower-triangular linear operator.
  tril = [[1., 2.], [3., 4.]]
  operator = LinearOperatorLowerTriangular(tril)

  # The upper triangle is ignored.
  operator.to_dense()
  ==> [[1., 0.]
       [3., 4.]]

  operator.shape
  ==> [2, 2]

  operator.log_abs_determinant()
  ==> scalar Tensor

  x = ... Shape [2, 4] Tensor
  operator.matmul(x)
  ==> Shape [2, 4] Tensor

  # Create a [2, 3] batch of 4 x 4 linear operators.
  tril = tf.random_normal(shape=[2, 3, 4, 4])
  operator = LinearOperatorLowerTriangular(tril)
  ```

  #### Shape compatibility

  This operator acts on [batch] matrix with compatible shape.
  `x` is a batch matrix with compatible shape for `matmul` and `solve` if

  ```
  operator.shape = [B1,...,Bb] + [N, N],  with b >= 0
  x.shape =        [B1,...,Bb] + [N, R],  with R >= 0.
  ```

  #### Performance

  Suppose `operator` is a `LinearOperatorLowerTriangular` of shape `[N, N]`,
  and `x.shape = [N, R]`.  Then

  * `operator.matmul(x)` involves `N^2 * R` multiplications.
  * `operator.solve(x)` involves `N * R` size `N` back-substitutions.
  * `operator.determinant()` involves a size `N` `reduce_prod`.

  If instead `operator` and `x` have shape `[B1,...,Bb, N, N]` and
  `[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`.

  #### Matrix property hints

  This `LinearOperator` is initialized with boolean flags of the form `is_X`,
  for `X = non_singular, self_adjoint, positive_definite, square`.
  These have the following meaning:

  * If `is_X == True`, callers should expect the operator to have the
    property `X`.  This is a promise that should be fulfilled, but is *not* a
    runtime assert.  For example, finite floating point precision may result
    in these promises being violated.
  * If `is_X == False`, callers should expect the operator to not have `X`.
  * If `is_X == None` (the default), callers should have no expectation either
    way.
  """

  def __init__(self,
               tril,
               is_non_singular=None,
               is_self_adjoint=None,
               is_positive_definite=None,
               is_square=None,
               name="LinearOperatorLowerTriangular"):
    r"""Initialize a `LinearOperatorLowerTriangular`.

    Args:
      tril:  Shape `[B1,...,Bb, N, N]` with `b >= 0`, `N >= 0`.
        The lower triangular part of `tril` defines this operator.  The strictly
        upper triangle is ignored.
      is_non_singular:  Expect that this operator is non-singular.
        This operator is non-singular if and only if its diagonal elements are
        all non-zero.
      is_self_adjoint:  Expect that this operator is equal to its hermitian
        transpose.  This operator is self-adjoint only if it is diagonal with
        real-valued diagonal entries.  In this case it is advised to use
        `LinearOperatorDiag`.
      is_positive_definite:  Expect that this operator is positive definite,
        meaning the quadratic form `x^H A x` has positive real part for all
        nonzero `x`.  Note that we do not require the operator to be
        self-adjoint to be positive-definite.  See:
        https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
      is_square:  Expect that this operator acts like square [batch] matrices.
      name: A name for this `LinearOperator`.

    Raises:
      ValueError:  If `is_square` is `False`.
    """

    if is_square is False:
      raise ValueError(
          "Only square lower triangular operators supported at this time.")
    is_square = True

    with ops.name_scope(name, values=[tril]):
      self._tril = ops.convert_to_tensor(tril, name="tril")
      self._check_tril(self._tril)
      self._tril = array_ops.matrix_band_part(tril, -1, 0)
      self._diag = array_ops.matrix_diag_part(self._tril)

      super(LinearOperatorLowerTriangular, self).__init__(
          dtype=self._tril.dtype,
          graph_parents=[self._tril],
          is_non_singular=is_non_singular,
          is_self_adjoint=is_self_adjoint,
          is_positive_definite=is_positive_definite,
          is_square=is_square,
          name=name)

  def _check_tril(self, tril):
    """Static check of the `tril` argument."""
    allowed_dtypes = [
        dtypes.float16,
        dtypes.float32,
        dtypes.float64,
        dtypes.complex64,
        dtypes.complex128,
    ]
    dtype = tril.dtype
    if dtype not in allowed_dtypes:
      raise TypeError(
          "Argument tril must have dtype in %s.  Found: %s"
          % (allowed_dtypes, dtype))

    if tril.get_shape().ndims is not None and tril.get_shape().ndims < 2:
      raise ValueError(
          "Argument tril must have at least 2 dimensions.  Found: %s"
          % tril)

  def _shape(self):
    return self._tril.get_shape()

  def _shape_tensor(self):
    return array_ops.shape(self._tril)

  def _assert_non_singular(self):
    return linear_operator_util.assert_no_entries_with_modulus_zero(
        self._diag,
        message="Singular operator:  Diagonal contained zero values.")

  def _matmul(self, x, adjoint=False, adjoint_arg=False):
    return linear_operator_util.matmul_with_broadcast(
        self._tril, x, adjoint_a=adjoint, adjoint_b=adjoint_arg)

  def _determinant(self):
    return math_ops.reduce_prod(self._diag, reduction_indices=[-1])

  def _log_abs_determinant(self):
    return math_ops.reduce_sum(
        math_ops.log(math_ops.abs(self._diag)), reduction_indices=[-1])

  def _solve(self, rhs, adjoint=False, adjoint_arg=False):
    rhs = linalg.adjoint(rhs) if adjoint_arg else rhs
    return linear_operator_util.matrix_triangular_solve_with_broadcast(
        self._tril, rhs, lower=True, adjoint=adjoint)

  def _to_dense(self):
    return self._tril

  def _add_to_tensor(self, x):
    return self._tril + x