aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/init_ops.py
blob: 39b7295124907b2f65391d90b9cb919e879d5e7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations often used for initializing tensors.

All variable initializers returned by functions in this file should have the
following signature:

def _initializer(shape, dtype=dtypes.float32, partition_info=None):
  Args:
    shape: List of `int` representing the shape of the output `Tensor`. Some
      initializers may also be able to accept a `Tensor`.
    dtype: (Optional) Type of the output `Tensor`.
    partition_info: (Optional) variable_scope._PartitionInfo object holding
      additional information about how the variable is partitioned. May be
      `None` if the variable is not partitioned.
  Returns:
    A `Tensor` of type `dtype` and `shape`.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import numpy as np

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.util.deprecation import deprecated
from tensorflow.python.util.tf_export import tf_export


@tf_export("keras.initializers.Initializer")
class Initializer(object):
  """Initializer base class: all initializers inherit from this class.
  """

  def __call__(self, shape, dtype=None, partition_info=None):
    raise NotImplementedError

  def get_config(self):
    """Returns the configuration of the initializer as a JSON-serializable dict.

    Returns:
      A JSON-serializable Python dict.
    """
    return {}

  @classmethod
  def from_config(cls, config):
    """Instantiates an initializer from a configuration dictionary.

    Example:

    ```python
    initializer = RandomUniform(-1, 1)
    config = initializer.get_config()
    initializer = RandomUniform.from_config(config)
    ```

    Args:
      config: A Python dictionary.
        It will typically be the output of `get_config`.

    Returns:
      An Initializer instance.
    """
    return cls(**config)


@tf_export("keras.initializers.Zeros", "initializers.zeros",
           "zeros_initializer")
class Zeros(Initializer):
  """Initializer that generates tensors initialized to 0."""

  def __init__(self, dtype=dtypes.float32):
    self.dtype = dtypes.as_dtype(dtype)

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    return array_ops.zeros(shape, dtype)

  def get_config(self):
    return {"dtype": self.dtype.name}


@tf_export("keras.initializers.Ones", "initializers.ones", "ones_initializer")
class Ones(Initializer):
  """Initializer that generates tensors initialized to 1."""

  def __init__(self, dtype=dtypes.float32):
    self.dtype = dtypes.as_dtype(dtype)

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    return array_ops.ones(shape, dtype)

  def get_config(self):
    return {"dtype": self.dtype.name}


@tf_export("keras.initializers.Constant", "initializers.constant",
           "constant_initializer")
class Constant(Initializer):
  """Initializer that generates tensors with constant values.

  The resulting tensor is populated with values of type `dtype`, as
  specified by arguments `value` following the desired `shape` of the
  new tensor (see examples below).

  The argument `value` can be a constant value, or a list of values of type
  `dtype`. If `value` is a list, then the length of the list must be less
  than or equal to the number of elements implied by the desired shape of the
  tensor. In the case where the total number of elements in `value` is less
  than the number of elements required by the tensor shape, the last element
  in `value` will be used to fill the remaining entries. If the total number of
  elements in `value` is greater than the number of elements required by the
  tensor shape, the initializer will raise a `ValueError`.

  Args:
    value: A Python scalar, list or tuple of values, or a N-dimensional numpy
      array. All elements of the initialized variable will be set to the
      corresponding value in the `value` argument.
    dtype: The data type.
    verify_shape: Boolean that enables verification of the shape of `value`. If
      `True`, the initializer will throw an error if the shape of `value` is not
      compatible with the shape of the initialized tensor.

  Raises:
    TypeError: If the input `value` is not one of the expected types.

  Examples:
    The following example can be rewritten using a numpy.ndarray instead
    of the `value` list, even reshaped, as shown in the two commented lines
    below the `value` list initialization.

  ```python
    >>> import numpy as np
    >>> import tensorflow as tf

    >>> value = [0, 1, 2, 3, 4, 5, 6, 7]
    >>> # value = np.array(value)
    >>> # value = value.reshape([2, 4])
    >>> init = tf.constant_initializer(value)

    >>> print('fitting shape:')
    >>> with tf.Session():
    >>>   x = tf.get_variable('x', shape=[2, 4], initializer=init)
    >>>   x.initializer.run()
    >>>   print(x.eval())

    fitting shape:
    [[ 0.  1.  2.  3.]
     [ 4.  5.  6.  7.]]

    >>> print('larger shape:')
    >>> with tf.Session():
    >>>   x = tf.get_variable('x', shape=[3, 4], initializer=init)
    >>>   x.initializer.run()
    >>>   print(x.eval())

    larger shape:
    [[ 0.  1.  2.  3.]
     [ 4.  5.  6.  7.]
     [ 7.  7.  7.  7.]]

    >>> print('smaller shape:')
    >>> with tf.Session():
    >>>   x = tf.get_variable('x', shape=[2, 3], initializer=init)

    ValueError: Too many elements provided. Needed at most 6, but received 8

    >>> print('shape verification:')
    >>> init_verify = tf.constant_initializer(value, verify_shape=True)
    >>> with tf.Session():
    >>>   x = tf.get_variable('x', shape=[3, 4], initializer=init_verify)

    TypeError: Expected Tensor's shape: (3, 4), got (8,).
  ```
  """

  def __init__(self, value=0, dtype=dtypes.float32, verify_shape=False):
    if not (np.isscalar(value) or isinstance(value, (list, tuple, np.ndarray))):
      raise TypeError(
          "Invalid type for initial value: %s (expected Python scalar, list or "
          "tuple of values, or numpy.ndarray)." % type(value))

    self.value = value
    self.dtype = dtypes.as_dtype(dtype)
    self._verify_shape = verify_shape

  def __call__(self, shape, dtype=None, partition_info=None, verify_shape=None):
    if dtype is None:
      dtype = self.dtype
    if verify_shape is None:
      verify_shape = self._verify_shape
    return constant_op.constant(
        self.value, dtype=dtype, shape=shape, verify_shape=verify_shape)

  def get_config(self):
    # We don't include `verify_shape` for compatibility with Keras.
    # `verify_shape` should be passed as an argument to `__call__` rather
    # than as a constructor argument: conceptually it isn't a property
    # of the initializer.
    return {"value": self.value, "dtype": self.dtype.name}


@tf_export("keras.initializers.RandomUniform", "initializers.random_uniform",
           "random_uniform_initializer")
class RandomUniform(Initializer):
  """Initializer that generates tensors with a uniform distribution.

  Args:
    minval: A python scalar or a scalar tensor. Lower bound of the range
      of random values to generate.
    maxval: A python scalar or a scalar tensor. Upper bound of the range
      of random values to generate.  Defaults to 1 for float types.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type.
  """

  def __init__(self, minval=0, maxval=None, seed=None, dtype=dtypes.float32):
    self.minval = minval
    self.maxval = maxval
    self.seed = seed
    self.dtype = dtypes.as_dtype(dtype)

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    return random_ops.random_uniform(
        shape, self.minval, self.maxval, dtype, seed=self.seed)

  def get_config(self):
    return {
        "minval": self.minval,
        "maxval": self.maxval,
        "seed": self.seed,
        "dtype": self.dtype.name
    }


@tf_export("keras.initializers.RandomNormal", "initializers.random_normal",
           "random_normal_initializer")
class RandomNormal(Initializer):
  """Initializer that generates tensors with a normal distribution.

  Args:
    mean: a python scalar or a scalar tensor. Mean of the random values
      to generate.
    stddev: a python scalar or a scalar tensor. Standard deviation of the
      random values to generate.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type. Only floating point types are supported.
  """

  def __init__(self, mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32):
    self.mean = mean
    self.stddev = stddev
    self.seed = seed
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    return random_ops.random_normal(
        shape, self.mean, self.stddev, dtype, seed=self.seed)

  def get_config(self):
    return {
        "mean": self.mean,
        "stddev": self.stddev,
        "seed": self.seed,
        "dtype": self.dtype.name
    }


@tf_export("keras.initializers.TruncatedNormal",
           "initializers.truncated_normal", "truncated_normal_initializer")
class TruncatedNormal(Initializer):
  """Initializer that generates a truncated normal distribution.

  These values are similar to values from a `random_normal_initializer`
  except that values more than two standard deviations from the mean
  are discarded and re-drawn. This is the recommended initializer for
  neural network weights and filters.

  Args:
    mean: a python scalar or a scalar tensor. Mean of the random values
      to generate.
    stddev: a python scalar or a scalar tensor. Standard deviation of the
      random values to generate.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type. Only floating point types are supported.
  """

  def __init__(self, mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32):
    self.mean = mean
    self.stddev = stddev
    self.seed = seed
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    return random_ops.truncated_normal(
        shape, self.mean, self.stddev, dtype, seed=self.seed)

  def get_config(self):
    return {
        "mean": self.mean,
        "stddev": self.stddev,
        "seed": self.seed,
        "dtype": self.dtype.name
    }


@tf_export("initializers.uniform_unit_scaling",
           "uniform_unit_scaling_initializer")
class UniformUnitScaling(Initializer):
  """Initializer that generates tensors without scaling variance.

  When initializing a deep network, it is in principle advantageous to keep
  the scale of the input variance constant, so it does not explode or diminish
  by reaching the final layer. If the input is `x` and the operation `x * W`,
  and we want to initialize `W` uniformly at random, we need to pick `W` from

      [-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]

  to keep the scale intact, where `dim = W.shape[0]` (the size of the input).
  A similar calculation for convolutional networks gives an analogous result
  with `dim` equal to the product of the first 3 dimensions.  When
  nonlinearities are present, we need to multiply this by a constant `factor`.
  See [Sussillo et al., 2014](https://arxiv.org/abs/1412.6558)
  ([pdf](http://arxiv.org/pdf/1412.6558.pdf)) for deeper motivation, experiments
  and the calculation of constants. In section 2.3 there, the constants were
  numerically computed: for a linear layer it's 1.0, relu: ~1.43, tanh: ~1.15.

  Args:
    factor: Float.  A multiplicative factor by which the values will be scaled.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type. Only floating point types are supported.
  """

  @deprecated(None,
              "Use tf.initializers.variance_scaling instead with distribution="
              "uniform to get equivalent behavior.")
  def __init__(self, factor=1.0, seed=None, dtype=dtypes.float32):
    self.factor = factor
    self.seed = seed
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    scale_shape = shape
    if partition_info is not None:
      scale_shape = partition_info.full_shape

    input_size = 1.0
    # Estimating input size is not possible to do perfectly, but we try.
    # The estimate, obtained by multiplying all dimensions but the last one,
    # is the right thing for matrix multiply and convolutions (see above).
    for dim in scale_shape[:-1]:
      input_size *= float(dim)
    # Avoid errors when initializing zero-size tensors.
    input_size = max(input_size, 1.0)
    max_val = math.sqrt(3 / input_size) * self.factor
    return random_ops.random_uniform(
        shape, -max_val, max_val, dtype, seed=self.seed)

  def get_config(self):
    return {"factor": self.factor, "seed": self.seed, "dtype": self.dtype.name}


@tf_export("keras.initializers.VarianceScaling",
           "initializers.variance_scaling", "variance_scaling_initializer")
class VarianceScaling(Initializer):
  """Initializer capable of adapting its scale to the shape of weights tensors.

  With `distribution="normal"`, samples are drawn from a truncated normal
  distribution centered on zero, with `stddev = sqrt(scale / n)`
  where n is:
    - number of input units in the weight tensor, if mode = "fan_in"
    - number of output units, if mode = "fan_out"
    - average of the numbers of input and output units, if mode = "fan_avg"

  With `distribution="uniform"`, samples are drawn from a uniform distribution
  within [-limit, limit], with `limit = sqrt(3 * scale / n)`.

  Args:
    scale: Scaling factor (positive float).
    mode: One of "fan_in", "fan_out", "fan_avg".
    distribution: Random distribution to use. One of "normal", "uniform".
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type. Only floating point types are supported.

  Raises:
    ValueError: In case of an invalid value for the "scale", mode" or
      "distribution" arguments.
  """

  def __init__(self,
               scale=1.0,
               mode="fan_in",
               distribution="normal",
               seed=None,
               dtype=dtypes.float32):
    if scale <= 0.:
      raise ValueError("`scale` must be positive float.")
    if mode not in {"fan_in", "fan_out", "fan_avg"}:
      raise ValueError("Invalid `mode` argument:", mode)
    distribution = distribution.lower()
    if distribution not in {"normal", "uniform"}:
      raise ValueError("Invalid `distribution` argument:", distribution)
    self.scale = scale
    self.mode = mode
    self.distribution = distribution
    self.seed = seed
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    scale = self.scale
    scale_shape = shape
    if partition_info is not None:
      scale_shape = partition_info.full_shape
    fan_in, fan_out = _compute_fans(scale_shape)
    if self.mode == "fan_in":
      scale /= max(1., fan_in)
    elif self.mode == "fan_out":
      scale /= max(1., fan_out)
    else:
      scale /= max(1., (fan_in + fan_out) / 2.)
    if self.distribution == "normal":
      stddev = math.sqrt(scale)
      return random_ops.truncated_normal(
          shape, 0.0, stddev, dtype, seed=self.seed)
    else:
      limit = math.sqrt(3.0 * scale)
      return random_ops.random_uniform(
          shape, -limit, limit, dtype, seed=self.seed)

  def get_config(self):
    return {
        "scale": self.scale,
        "mode": self.mode,
        "distribution": self.distribution,
        "seed": self.seed,
        "dtype": self.dtype.name
    }


@tf_export("keras.initializers.Orthogonal", "initializers.orthogonal",
           "orthogonal_initializer")
class Orthogonal(Initializer):
  """Initializer that generates an orthogonal matrix.

  If the shape of the tensor to initialize is two-dimensional, it is initialized
  with an orthogonal matrix obtained from the QR decomposition of a matrix of
  uniform random numbers. If the matrix has fewer rows than columns then the
  output will have orthogonal rows. Otherwise, the output will have orthogonal
  columns.

  If the shape of the tensor to initialize is more than two-dimensional,
  a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])`
  is initialized, where `n` is the length of the shape vector.
  The matrix is subsequently reshaped to give a tensor of the desired shape.

  Args:
    gain: multiplicative factor to apply to the orthogonal matrix
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type.
  """

  def __init__(self, gain=1.0, seed=None, dtype=dtypes.float32):
    self.gain = gain
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))
    self.seed = seed

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    # Check the shape
    if len(shape) < 2:
      raise ValueError("The tensor to initialize must be "
                       "at least two-dimensional")
    # Flatten the input shape with the last dimension remaining
    # its original shape so it works for conv2d
    num_rows = 1
    for dim in shape[:-1]:
      num_rows *= dim
    num_cols = shape[-1]
    flat_shape = (num_cols, num_rows) if num_rows < num_cols else (num_rows,
                                                                   num_cols)

    # Generate a random matrix
    a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    d = array_ops.diag_part(r)
    q *= math_ops.sign(d)
    if num_rows < num_cols:
      q = array_ops.matrix_transpose(q)
    return self.gain * array_ops.reshape(q, shape)

  def get_config(self):
    return {"gain": self.gain, "seed": self.seed, "dtype": self.dtype.name}


class ConvolutionDeltaOrthogonal(Initializer):
  """Initializer that generates a delta orthogonal kernel for ConvNets.

  The shape of the tensor must have length 3, 4 or 5. The number of input
  filters must not exceed the number of output filters. The center pixels of the
  tensor form an orthogonal matrix. Other pixels are set to be zero.

  Args:
    gain: Multiplicative factor to apply to the orthogonal matrix. Default is 1.
      The 2-norm of an input is multiplied by a factor of 'sqrt(gain)' after
      applying this convolution.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed} for behavior.
    dtype: The data type.
  """

  def __init__(self, gain=1.0, seed=None, dtype=dtypes.float32):
    self.gain = gain
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))
    self.seed = seed

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    # Check the shape
    if len(shape) < 3 or len(shape) > 5:
      raise ValueError("The tensor to initialize must be at least "
                       "three-dimensional and at most five-dimensional")

    if shape[-2] > shape[-1]:
      raise ValueError("In_filters cannot be greater than out_filters.")

    # Generate a random matrix
    a = random_ops.random_normal([shape[-1], shape[-1]],
                                 dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    d = array_ops.diag_part(r)
    q *= math_ops.sign(d)
    q = q[:shape[-2], :]
    q *= math_ops.sqrt(math_ops.cast(self.gain, dtype=dtype))
    if len(shape) == 3:
      weight = array_ops.scatter_nd([[(shape[0]-1)//2]],
                                    array_ops.expand_dims(q, 0), shape)
    elif len(shape) == 4:
      weight = array_ops.scatter_nd([[(shape[0]-1)//2, (shape[1]-1)//2]],
                                    array_ops.expand_dims(q, 0), shape)
    else:
      weight = array_ops.scatter_nd([[(shape[0]-1)//2, (shape[1]-1)//2,
                                      (shape[2]-1)//2]],
                                    array_ops.expand_dims(q, 0), shape)
    return weight

  def get_config(self):
    return {"gain": self.gain, "seed": self.seed, "dtype": self.dtype.name}


class ConvolutionOrthogonal(Initializer):
  """Initializer that generates orthogonal kernel for ConvNets.

  Base class used to construct 1D, 2D and 3D orthogonal kernels for convolution.

  Args:
    gain: multiplicative factor to apply to the orthogonal matrix. Default is 1.
      The 2-norm of an input is multiplied by a factor of 'sqrt(gain)' after
      applying this convolution.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed} for behavior.
    dtype: The data type.
  """

  def __init__(self, gain=1.0, seed=None, dtype=dtypes.float32):
    self.gain = gain
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))
    self.seed = seed

  def __call__(self, shape, dtype=None, partition_info=None):
    raise NotImplementedError

  def get_config(self):
    return {"gain": self.gain, "seed": self.seed, "dtype": self.dtype.name}

  # Helper functions.
  def _orthogonal_matrix(self, n):
    """Construct an n x n orthogonal matrix.

    Args:
      n: Dimension.
    Returns:
      A n x n orthogonal matrix.
    """
    a = random_ops.random_normal([n, n], dtype=self.dtype, seed=self.seed)
    if self.seed:
      self.seed += 1
    q, r = linalg_ops.qr(a)
    d = array_ops.diag_part(r)
    # make q uniform
    q *= math_ops.sign(d)
    return q

  def _symmetric_projection(self, n):
    """Compute a n x n symmetric projection matrix.

    Args:
      n: Dimension.
    Returns:
      A n x n symmetric projection matrix, i.e. a matrix P s.t. P=P*P, P=P^T.
    """
    q = self._orthogonal_matrix(n)
    # randomly zeroing out some columns
    mask = math_ops.cast(random_ops.random_normal([n], seed=self.seed) > 0,
                         self.dtype)
    if self.seed:
      self.seed += 1
    c = math_ops.multiply(q, mask)
    return math_ops.matmul(c, array_ops.matrix_transpose(c))


class ConvolutionOrthogonal2D(ConvolutionOrthogonal):
  """Initializer that generates a 2D orthogonal kernel for ConvNets.

  The shape of the tensor must have length 4. The number of input
  filters must not exceed the number of output filters.
  The orthogonality(==isometry) is exact when the inputs are circular padded.
  There are finite-width effects with non-circular padding (e.g. zero padding).

  Args:
    gain: Multiplicative factor to apply to the orthogonal matrix. Default is 1.
      This has the effect of scaling the output 2-norm by a factor of
      `sqrt(gain)`.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed} for behavior.
    dtype: The data type.
  """

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    if len(shape) != 4:
      raise ValueError("The tensor to initialize must be four-dimensional")

    if shape[-2] > shape[-1]:
      raise ValueError("In_filters cannot be greater than out_filters.")

    if shape[0] != shape[1]:
      raise ValueError("Kernel sizes must be equal.")

    kernel = self._orthogonal_kernel(shape[0], shape[2], shape[3])
    kernel *= math_ops.sqrt(math_ops.cast(self.gain, dtype=dtype))
    return kernel

  def _dict_to_tensor(self, x, k1, k2):
    """Convert a dictionary to a tensor.

    Args:
      x: A k1 * k2 dictionary.
      k1: First dimension of x.
      k2: Second dimension of x.
    Returns:
      A k1 * k2 tensor.
    """

    return array_ops.stack([array_ops.stack([x[i, j] for j in range(k2)])
                            for i in range(k1)])

  def _block_orth(self, p1, p2):
    """Construct a 2 x 2 kernel. Used to construct orthgonal kernel.

    Args:
      p1: A symmetric projection matrix.
      p2: A symmetric projection matrix.
    Returns:
      A 2 x 2 kernel [[p1p2,         p1(1-p2)],
                      [(1-p1)p2, (1-p1)(1-p2)]].
    Raises:
      ValueError: If the dimensions of p1 and p2 are different.
    """
    if p1.shape.as_list() != p2.shape.as_list():
      raise ValueError("The dimension of the matrices must be the same.")
    n = p1.shape.as_list()[0]
    kernel2x2 = {}
    eye = linalg_ops.eye(n, dtype=self.dtype)
    kernel2x2[0, 0] = math_ops.matmul(p1, p2)
    kernel2x2[0, 1] = math_ops.matmul(p1, (eye - p2))
    kernel2x2[1, 0] = math_ops.matmul((eye - p1), p2)
    kernel2x2[1, 1] = math_ops.matmul((eye - p1), (eye - p2))

    return kernel2x2

  def _matrix_conv(self, m1, m2):
    """Matrix convolution.

    Args:
      m1: A k x k dictionary, each element is a n x n matrix.
      m2: A l x l dictionary, each element is a n x n matrix.

    Returns:
      (k + l - 1) * (k + l - 1) dictionary each element is a n x n matrix.
    Raises:
      ValueError: if the entries of m1 and m2 are of different dimensions.
    """

    n = (m1[0, 0]).shape.as_list()[0]
    if n != (m2[0, 0]).shape.as_list()[0]:
      raise ValueError("The entries in matrices m1 and m2 "
                       "must have the same dimensions!")
    k = int(np.sqrt(len(m1)))
    l = int(np.sqrt(len(m2)))
    result = {}
    size = k + l - 1
    # Compute matrix convolution between m1 and m2.
    for i in range(size):
      for j in range(size):
        result[i, j] = array_ops.zeros([n, n], self.dtype)
        for index1 in range(min(k, i + 1)):
          for index2 in range(min(k, j + 1)):
            if (i - index1) < l and (j - index2) < l:
              result[i, j] += math_ops.matmul(m1[index1, index2],
                                              m2[i - index1, j - index2])
    return result

  def _orthogonal_kernel(self, ksize, cin, cout):
    """Construct orthogonal kernel for convolution.

    Args:
      ksize: Kernel size.
      cin: Number of input channels.
      cout: Number of output channels.
    Returns:
      An [ksize, ksize, cin, cout] orthogonal kernel.
    Raises:
      ValueError: If cin > cout.
    """
    if cin > cout:
      raise ValueError("The number of input channels cannot exceed "
                       "the number of output channels.")
    orth = self._orthogonal_matrix(cout)[0:cin, :]
    if ksize == 1:
      return array_ops.expand_dims(array_ops.expand_dims(orth, 0), 0)

    p = self._block_orth(self._symmetric_projection(cout),
                         self._symmetric_projection(cout))
    for _ in range(ksize - 2):
      temp = self._block_orth(self._symmetric_projection(cout),
                              self._symmetric_projection(cout))
      p = self._matrix_conv(p, temp)
    for i in range(ksize):
      for j in range(ksize):
        p[i, j] = math_ops.matmul(orth, p[i, j])

    return self._dict_to_tensor(p, ksize, ksize)


class ConvolutionOrthogonal1D(ConvolutionOrthogonal):
  """Initializer that generates a 1D orthogonal kernel for ConvNets.

  The shape of the tensor must have length 3. The number of input
  filters must not exceed the number of output filters.
  The orthogonality(==isometry) is exact when the inputs are circular padded.
  There are finite-width effects with non-circular padding (e.g. zero padding).

  Args:
    gain: Multiplicative factor to apply to the orthogonal matrix. Default is 1.
      The 2-norm of an input is multiplied by a factor of 'sqrt(gain)' after
      applying this convolution.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type.
  """

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    if len(shape) != 3:
      raise ValueError("The tensor to initialize must be three-dimensional")

    if shape[-2] > shape[-1]:
      raise ValueError("In_filters cannot be greater than out_filters.")

    kernel = self._orthogonal_kernel(shape[0], shape[-2], shape[-1])
    kernel *= math_ops.sqrt(math_ops.cast(self.gain, dtype=dtype))
    return kernel

  def _dict_to_tensor(self, x, k):
    """Convert a dictionary to a tensor.

    Args:
      x: A dictionary of length k.
      k: Dimension of x.
    Returns:
      A tensor with the same dimension.
    """

    return array_ops.stack([x[i] for i in range(k)])

  def _block_orth(self, projection_matrix):
    """Construct a kernel. Used to construct orthgonal kernel.

    Args:
      projection_matrix: A symmetric projection matrix of size n x n.
    Returns:
      [projection_matrix, (1 - projection_matrix)].
    """
    n = projection_matrix.shape.as_list()[0]
    kernel = {}
    eye = linalg_ops.eye(n, dtype=self.dtype)
    kernel[0] = projection_matrix
    kernel[1] = eye - projection_matrix
    return kernel

  def _matrix_conv(self, m1, m2):
    """Matrix convolution.

    Args:
      m1: A dictionary of length k, each element is a n x n matrix.
      m2: A dictionary of length l, each element is a n x n matrix.

    Returns:
      (k + l - 1)  dictionary each element is a n x n matrix.
    Raises:
      ValueError: Ff the entries of m1 and m2 are of different dimensions.
    """

    n = (m1[0]).shape.as_list()[0]
    if n != (m2[0]).shape.as_list()[0]:
      raise ValueError("The entries in matrices m1 and m2 "
                       "must have the same dimensions!")
    k = len(m1)
    l = len(m2)
    result = {}
    size = k + l - 1
    # Compute matrix convolution between m1 and m2.
    for i in range(size):
      result[i] = array_ops.zeros([n, n], self.dtype)
      for index in range(min(k, i + 1)):
        if (i - index) < l:
          result[i] += math_ops.matmul(m1[index], m2[i - index])
    return result

  def _orthogonal_kernel(self, ksize, cin, cout):
    """Construct orthogonal kernel for convolution.

    Args:
      ksize: Kernel size.
      cin: Number of input channels.
      cout: Number of output channels.
    Returns:
      An [ksize, ksize, cin, cout] orthogonal kernel.
    Raises:
      ValueError: If cin > cout.
    """
    if cin > cout:
      raise ValueError("The number of input channels cannot exceed "
                       "the number of output channels.")
    orth = self._orthogonal_matrix(cout)[0:cin, :]
    if ksize == 1:
      return array_ops.expand_dims(orth, 0)

    p = self._block_orth(self._symmetric_projection(cout))
    for _ in range(ksize - 2):
      temp = self._block_orth(self._symmetric_projection(cout))
      p = self._matrix_conv(p, temp)
    for i in range(ksize):
      p[i] = math_ops.matmul(orth, p[i])

    return self._dict_to_tensor(p, ksize)


class ConvolutionOrthogonal3D(ConvolutionOrthogonal):
  """Initializer that generates a 3D orthogonal kernel for ConvNets.

  The shape of the tensor must have length 5. The number of input
  filters must not exceed the number of output filters.
  The orthogonality(==isometry) is exact when the inputs are circular padded.
  There are finite-width effects with non-circular padding (e.g. zero padding).

  Args:
    gain: Multiplicative factor to apply to the orthogonal matrix. Default is 1.
      The 2-norm of an input is multiplied by a factor of 'sqrt(gain)' after
      applying this convolution.
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed} for behavior.
    dtype: The data type.
  """

  def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    if len(shape) != 5:
      raise ValueError("The tensor to initialize must be five-dimensional")

    if shape[-2] > shape[-1]:
      raise ValueError("In_filters cannot be greater than out_filters.")

    if shape[0] != shape[1] or shape[0] != shape[2]:
      raise ValueError("Kernel sizes must be equal.")

    kernel = self._orthogonal_kernel(shape[0], shape[-2], shape[-1])
    kernel *= math_ops.sqrt(math_ops.cast(self.gain, dtype=dtype))
    return kernel

  def _dict_to_tensor(self, x, k1, k2, k3):
    """Convert a dictionary to a tensor.

    Args:
      x: A k1 * k2 dictionary.
      k1: First dimension of x.
      k2: Second dimension of x.
      k3: Third dimension of x.
    Returns:
      A k1 * k2 * k3 tensor.
    """

    return array_ops.stack([array_ops.stack(
        [array_ops.stack([x[i, j, k] for k in range(k3)])
         for j in range(k2)]) for i in range(k1)])

  def _block_orth(self, p1, p2, p3):
    """Construct a 3 x 3 kernel. Used to construct orthgonal kernel.

    Args:
      p1: A symmetric projection matrix.
      p2: A symmetric projection matrix.
      p3: A symmetric projection matrix.
    Returns:
      A 2 x 2 x 2 kernel.
    Raises:
      ValueError: If the dimensions of p1, p2 and p3 are different.
    """
    p1_shape = p1.shape.as_list()
    if p1_shape != p2.shape.as_list() or p1_shape != p3.shape.as_list():
      raise ValueError("The dimension of the matrices must be the same.")
    n = p1_shape[0]
    eye = linalg_ops.eye(n, dtype=self.dtype)
    kernel2x2x2 = {}
    def matmul(p1, p2, p3):
      return math_ops.matmul(math_ops.matmul(p1, p2), p3)
    def cast(i, p):
      """Return p or (1-p)."""
      return i * p + (1-i) * (eye - p)
    for i in [0, 1]:
      for j in [0, 1]:
        for k in [0, 1]:
          kernel2x2x2[i, j, k] = matmul(cast(i, p1), cast(j, p2), cast(k, p3))
    return kernel2x2x2

  def _matrix_conv(self, m1, m2):
    """Matrix convolution.

    Args:
      m1: is a k x k x k  dictionary, each element is a n x n matrix.
      m2: is a l x l x l dictionary, each element is a n x n matrix.

    Returns:
      (k + l - 1) x (k + l - 1) x (k + l - 1) dictionary each
      element is a n x n matrix.
    Raises:
      ValueError: if the entries of m1 and m2 are of different dimensions.
    """

    n = (m1[0, 0, 0]).shape.as_list()[0]
    if n != (m2[0, 0, 0]).shape.as_list()[0]:
      raise ValueError("The entries in matrices m1 and m2 "
                       "must have the same dimensions!")
    k = int(np.cbrt(len(m1)))
    l = int(np.cbrt(len(m2)))
    result = {}
    size = k + l - 1
    # Compute matrix convolution between m1 and m2.
    for i in range(size):
      for j in range(size):
        for r in range(size):
          result[i, j, r] = array_ops.zeros([n, n], self.dtype)
          for index1 in range(min(k, i + 1)):
            for index2 in range(min(k, j + 1)):
              for index3 in range(min(k, r + 1)):
                if (i - index1) < l and (j - index2) < l and (r - index3) < l:
                  result[i, j, r] += math_ops.matmul(m1[index1, index2, index3],
                                                     m2[i - index1, j - index2,
                                                        r - index3])
    return result

  def _orthogonal_kernel(self, ksize, cin, cout):
    """Construct orthogonal kernel for convolution.

    Args:
      ksize: Kernel size.
      cin: Number of input channels.
      cout: Number of output channels.
    Returns:
      An [ksize, ksize, ksize, cin, cout] orthogonal kernel.
    Raises:
      ValueError: If cin > cout.
    """
    if cin > cout:
      raise ValueError("The number of input channels cannot exceed "
                       "the number of output channels.")
    orth = self._orthogonal_matrix(cout)[0:cin, :]
    if ksize == 1:
      return array_ops.expand_dims(
          array_ops.expand_dims(
              array_ops.expand_dims(orth, 0), 0), 0)

    p = self._block_orth(self._symmetric_projection(cout),
                         self._symmetric_projection(cout),
                         self._symmetric_projection(cout))
    for _ in range(ksize - 2):
      temp = self._block_orth(self._symmetric_projection(cout),
                              self._symmetric_projection(cout),
                              self._symmetric_projection(cout))
      p = self._matrix_conv(p, temp)
    for i in range(ksize):
      for j in range(ksize):
        for k in range(ksize):
          p[i, j, k] = math_ops.matmul(orth, p[i, j, k])

    return self._dict_to_tensor(p, ksize, ksize, ksize)


@tf_export("keras.initializers.Identity", "initializers.identity")
class Identity(Initializer):
  """Initializer that generates the identity matrix.

  Only use for 2D matrices.

  Args:
    gain: Multiplicative factor to apply to the identity matrix.
    dtype: The type of the output.
  """

  def __init__(self, gain=1.0, dtype=dtypes.float32):
    self.gain = gain
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype))

  def __call__(self, shape, dtype=None, partition_info=None):
    full_shape = shape if partition_info is None else partition_info.full_shape
    if len(full_shape) != 2:
      raise ValueError(
          "Identity matrix initializer can only be used for 2D matrices.")
    if dtype is None:
      dtype = self.dtype
    initializer = linalg_ops.eye(*full_shape, dtype=dtype)
    if partition_info is not None:
      initializer = array_ops.slice(initializer, partition_info.var_offset,
                                    shape)
    return self.gain * initializer

  def get_config(self):
    return {"gain": self.gain, "dtype": self.dtype.name}

# Aliases.

# pylint: disable=invalid-name
zeros_initializer = Zeros
ones_initializer = Ones
constant_initializer = Constant
random_uniform_initializer = RandomUniform
random_normal_initializer = RandomNormal
truncated_normal_initializer = TruncatedNormal
uniform_unit_scaling_initializer = UniformUnitScaling
variance_scaling_initializer = VarianceScaling
orthogonal_initializer = Orthogonal
identity_initializer = Identity
convolutional_delta_orthogonal = ConvolutionDeltaOrthogonal
convolutional_orthogonal_1d = ConvolutionOrthogonal1D
convolutional_orthogonal_2d = ConvolutionOrthogonal2D
convolutional_orthogonal_3d = ConvolutionOrthogonal3D
# pylint: enable=invalid-name


@tf_export("glorot_uniform_initializer")
def glorot_uniform_initializer(seed=None, dtype=dtypes.float32):
  """The Glorot uniform initializer, also called Xavier uniform initializer.

  It draws samples from a uniform distribution within [-limit, limit]
  where `limit` is `sqrt(6 / (fan_in + fan_out))`
  where `fan_in` is the number of input units in the weight tensor
  and `fan_out` is the number of output units in the weight tensor.

  Reference: http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

  Args:
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type. Only floating point types are supported.

  Returns:
    An initializer.
  """
  return variance_scaling_initializer(
      scale=1.0, mode="fan_avg", distribution="uniform", seed=seed, dtype=dtype)


@tf_export("glorot_normal_initializer")
def glorot_normal_initializer(seed=None, dtype=dtypes.float32):
  """The Glorot normal initializer, also called Xavier normal initializer.

  It draws samples from a truncated normal distribution centered on 0
  with `stddev = sqrt(2 / (fan_in + fan_out))`
  where `fan_in` is the number of input units in the weight tensor
  and `fan_out` is the number of output units in the weight tensor.

  Reference: http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

  Args:
    seed: A Python integer. Used to create random seeds. See
      @{tf.set_random_seed}
      for behavior.
    dtype: The data type. Only floating point types are supported.

  Returns:
    An initializer.
  """
  return variance_scaling_initializer(
      scale=1.0, mode="fan_avg", distribution="normal", seed=seed, dtype=dtype)


# Utility functions.


def _compute_fans(shape):
  """Computes the number of input and output units for a weight shape.

  Args:
    shape: Integer shape tuple or TF tensor shape.

  Returns:
    A tuple of scalars (fan_in, fan_out).
  """
  if len(shape) < 1:  # Just to avoid errors for constants.
    fan_in = fan_out = 1
  elif len(shape) == 1:
    fan_in = fan_out = shape[0]
  elif len(shape) == 2:
    fan_in = shape[0]
    fan_out = shape[1]
  else:
    # Assuming convolution kernels (2D, 3D, or more).
    # kernel shape: (..., input_depth, depth)
    receptive_field_size = 1.
    for dim in shape[:-2]:
      receptive_field_size *= dim
    fan_in = shape[-2] * receptive_field_size
    fan_out = shape[-1] * receptive_field_size
  return fan_in, fan_out


def _assert_float_dtype(dtype):
  """Validate and return floating point type based on `dtype`.

  `dtype` must be a floating point type.

  Args:
    dtype: The data type to validate.

  Returns:
    Validated type.

  Raises:
    ValueError: if `dtype` is not a floating point type.
  """
  if not dtype.is_floating:
    raise ValueError("Expected floating point type, got %s." % dtype)
  return dtype