aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/gradients_test.py
blob: dac0ebbb6005bbb2cba2b63f7a40361fe9e41399 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""Tests for tensorflow.ops.gradients."""
import warnings

import tensorflow.python.platform

import numpy as np

from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.framework import types
# pylint: disable=unused-import
from tensorflow.python.ops import array_grad
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import constant_op
from tensorflow.python.ops import data_flow_grad
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import gradients
from tensorflow.python.ops import math_grad
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_grad
from tensorflow.python.ops import state_grad
# pylint: enable=unused-import
from tensorflow.python.ops.constant_op import constant
from tensorflow.python.ops.nn_ops import bias_add
from tensorflow.python.platform import googletest


def _OpsBetween(graph, to_ops, from_ops):
  """Build the list of operations between two lists of Operations.

  Args:
    graph: a Graph.
    to_ops: list of Operations.
    from_ops: list of Operations.

  Returns:
    The list of operations between "from_ops" and "to_ops", sorted by
    decreasing operation id. This list contains all elements of to_ops.

    TODO(mdevin): Think about returning an empty list if from_ops are not
    reachable from to_ops.  Presently it returns to_ops in that case.
  """
  # List of booleans, indexed by operation id, indicating if
  # an op is reached from the output of "input_ops".
  reached_ops = [False] * (graph._last_id + 1)
  # We only care to reach up to "output_ops" so we mark the
  # output ops as reached to avoid recursing past them.
  for op in to_ops:
    reached_ops[op._id] = True
  gradients._MarkReachedOps(from_ops, reached_ops)
  between_ops = gradients._GatherInputs(to_ops, reached_ops)
  between_ops.sort(lambda x, y: y._id - x._id)
  return between_ops


class GradientsTest(test_util.TensorFlowTestCase):

  def _OpNames(self, op_list):
    return ["%s/%d" % (str(op.name), op._id) for op in op_list]

  def _assertOpListEqual(self, ops1, ops2):
    self.assertEquals(self._OpNames(ops1), self._OpNames(ops2))

  def testOpsBetweenSimple(self):
    with ops.Graph().as_default() as g:
      t1 = constant(1.0)
      t2 = constant(2.0)
      t3 = array_ops.pack([t1, t2])
    # Full graph
    self._assertOpListEqual([t3.op, t2.op, t1.op],
                            _OpsBetween(g, [t3.op], [t1.op, t2.op]))
    # Only t1, t3.
    self._assertOpListEqual([t3.op, t1.op],
                            _OpsBetween(g, [t3.op], [t1.op]))

  def testOpsBetweenUnreachable(self):
    with ops.Graph().as_default() as g:
      t1 = constant(1.0)
      t2 = constant(2.0)
      _ = array_ops.pack([t1, t2])
      t4 = constant(1.0)
      t5 = constant(2.0)
      t6 = array_ops.pack([t4, t5])
    # Elements of to_ops are always listed.
    self._assertOpListEqual([t6.op], _OpsBetween(g, [t6.op], [t1.op]))

  def testOpsBetweenCut(self):
    with ops.Graph().as_default() as g:
      t1 = constant(1.0)
      t2 = constant(2.0)
      t3 = array_ops.pack([t1, t2])
      t4 = constant([1.0])
      t5 = array_ops.concat(0, [t4, t3])
      t6 = constant([2.0])
      t7 = array_ops.concat(0, [t5, t6])
    self._assertOpListEqual([t7.op, t5.op, t4.op],
                            _OpsBetween(g, [t7.op], [t4.op]))

  def testOpsBetweenCycle(self):
    with ops.Graph().as_default() as g:
      t1 = constant(1.0)
      t2 = constant(2.0)
      t3 = array_ops.pack([t1, t2])
      t4 = array_ops.concat(0, [t3, t3, t3])
      t5 = constant([1.0])
      t6 = array_ops.concat(0, [t4, t5])
      t7 = array_ops.concat(0, [t6, t3])
    self._assertOpListEqual([t6.op, t4.op, t3.op],
                            _OpsBetween(g, [t6.op], [t3.op]))
    self._assertOpListEqual([t7.op, t6.op, t5.op, t4.op, t3.op, t1.op],
                            _OpsBetween(g, [t7.op], [t1.op, t5.op]))
    self._assertOpListEqual([t6.op, t5.op, t4.op, t3.op, t2.op],
                            _OpsBetween(g, [t6.op], [t2.op, t5.op]))

  def testGradients(self):
    with ops.Graph().as_default():
      inp = constant(1.0, shape=[32, 100], name="in")
      w = constant(1.0, shape=[100, 10], name="w")
      b = constant(1.0, shape=[10], name="b")
      xw = math_ops.matmul(inp, w, name="xw")
      h = bias_add(xw, b, name="h")
      w_grad = gradients.gradients(h, w)[0]
    self.assertEquals("MatMul", w_grad.op.type)
    self.assertEquals(w_grad.op._original_op, xw.op)
    self.assertTrue(w_grad.op.get_attr("transpose_a"))
    self.assertFalse(w_grad.op.get_attr("transpose_b"))

  def testUnusedOutput(self):
    with ops.Graph().as_default():
      w = constant(1.0, shape=[2, 2])
      x = constant(1.0, shape=[2, 2])
      wx = math_ops.matmul(w, x)
      split_wx = array_ops.split(0, 2, wx)
      c = math_ops.reduce_sum(split_wx[1])
      gw = gradients.gradients(c, [w])[0]
    self.assertEquals("MatMul", gw.op.type)

  def testColocateGradients(self):
    with ops.Graph().as_default() as g:
      w = constant(1.0, shape=[1, 1])
      x = constant(1.0, shape=[1, 2])
      with g.device("/gpu:0"):
        wx = math_ops.matmul(w, x)
      gw = gradients.gradients(wx, [w], colocate_gradients_with_ops=True)[0]
    self.assertEquals("/gpu:0", gw.device)

  def testColocateGradientsWithAggregation(self):
    with ops.Graph().as_default() as g:
      with g.device("/gpu:1"):
        w = constant(1.0, shape=[1, 1])
      x = constant(1.0, shape=[1, 2])
      y = constant(1.0, shape=[1, 2])
      wx = math_ops.matmul(w, x)
      wy = math_ops.matmul(w, y)
      with g.device("/gpu:0"):
        z = wx + wy
      gw1 = gradients.gradients(z, [w], colocate_gradients_with_ops=True)[0]
      self.assertEquals("/gpu:1", gw1.device)
      gw2 = gradients.gradients(z, [w], colocate_gradients_with_ops=False)[0]
      self.assertEquals(None, gw2.device)

  def testBoundaryStop(self):
    # Test that we don't differentiate 'x'. The gradient function for 'x' is
    # set explicitly to None so we will get an exception if the gradient code
    # tries to differentiate 'x'.
    with ops.Graph().as_default() as g:
      c = constant(1.0)
      x = array_ops.identity(c)
      y = x + 1.0
      z = y + 1
      grads = gradients.gradients(z, [x])
      self.assertTrue(all([x for x in grads]))

  def testBoundaryContinue(self):
    # Test that we differentiate both 'x' and 'y' correctly when x is a
    # predecessor of y.
    with self.test_session():
      x = constant(1.0)
      y = x * 2.0
      z = y * 3.0
      grads = gradients.gradients(z, [x, y])
      self.assertTrue(all([x for x in grads]))
      self.assertEqual(6.0, grads[0].eval())

  def testAggregationMethodAccumulateN(self):
    with self.test_session():
      x = constant(1.0)
      y = x * 2.0
      z = y + y + y + y + y + y + y + y + y + y
      grads = gradients.gradients(
          z,
          [x, y],
          aggregation_method=
          gradients.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N)
      self.assertTrue(all([x for x in grads]))
      self.assertEqual(20.0, grads[0].eval())
      self.assertEqual(10.0, grads[1].eval())

  def testAggregationMethodAddN(self):
    with self.test_session():
      x = constant(1.0)
      y = x * 2.0
      z = y + y + y + y + y + y + y + y + y + y
      grads = gradients.gradients(
          z,
          [x, y],
          aggregation_method=gradients.AggregationMethod.ADD_N)
      self.assertTrue(all([x for x in grads]))
      self.assertEqual(20.0, grads[0].eval())
      self.assertEqual(10.0, grads[1].eval())

  def testAggregationMethodTree(self):
    with self.test_session():
      x = constant(1.0)
      y = x * 2.0
      z = y + y + y + y + y + y + y + y + y + y
      grads = gradients.gradients(
          z,
          [x, y],
          aggregation_method=gradients.AggregationMethod.EXPERIMENTAL_TREE)
      self.assertTrue(all([x for x in grads]))
      self.assertEqual(20.0, grads[0].eval())
      self.assertEqual(10.0, grads[1].eval())

  def testNoGradientForStringOutputs(self):
    with ops.Graph().as_default() as g:
      @ops.RegisterGradient("TestOp")
      def _TestOpGrad(op, float_grad, string_grad):
        """Gradient function for TestOp."""
        self.assertEquals(float_grad.dtype, types.float32)
        self.assertFalse(string_grad)
        return float_grad
      ops.RegisterShape("TestOp")(None)

      c = constant(1.0)
      x, y = g.create_op("TestOp", [c], [types.float32, types.string]).outputs
      z = x * 2.0
      w = z * 3.0
      grads = gradients.gradients(z, [c])
      self.assertTrue(isinstance(grads[0], ops.Tensor))


class StopGradientTest(test_util.TensorFlowTestCase):

  def testStopGradient(self):
    with ops.Graph().as_default():
      inp = constant(1.0, shape=[100, 32], name="in")
      out = array_ops.stop_gradient(inp)
      igrad = gradients.gradients(out, inp)[0]
    assert igrad is None


class HessianVectorProductTest(test_util.TensorFlowTestCase):

  def testHessianVectorProduct(self):
    # Manually compute the Hessian explicitly for a low-dimensional problem
    # and check that HessianVectorProduct matches multiplication by the
    # explicit Hessian.
    # Specifically, the Hessian of f(x) = x^T A x is
    # H = A + A^T.
    # We expect HessianVectorProduct(f(x), x, v) to be H v.
    m = 4
    rng = np.random.RandomState([1, 2, 3])
    mat_value = rng.randn(m, m).astype("float32")
    v_value = rng.randn(m, 1).astype("float32")
    x_value = rng.randn(m, 1).astype("float32")
    hess_value = mat_value + mat_value.T
    hess_v_value = np.dot(hess_value, v_value)
    for use_gpu in [False, True]:
      with self.test_session(use_gpu=use_gpu):
        mat = constant_op.constant(mat_value)
        v = constant_op.constant(v_value)
        x = constant_op.constant(x_value)
        mat_x = math_ops.matmul(mat, x, name="Ax")
        x_mat_x = math_ops.matmul(array_ops.transpose(x), mat_x, name="xAx")
        hess_v = gradients._hessian_vector_product(x_mat_x, [x], [v])[0]
        hess_v_actual = hess_v.eval()
      self.assertAllClose(hess_v_value, hess_v_actual)


class IndexedSlicesToTensorTest(test_util.TensorFlowTestCase):

  def testIndexedSlicesToTensor(self):
    with self.test_session():
      np_val = np.random.rand(4, 4, 4, 4).astype(np.float32)
      c = constant_op.constant(np_val)
      c_sparse = math_ops._as_indexed_slices(c)
      self.assertAllEqual(np_val.shape, c_sparse.dense_shape.eval())
      c_dense = math_ops.mul(c_sparse, 1.0)
      self.assertAllClose(np_val, c_dense.eval())

  def testInt64Indices(self):
    with self.test_session():
      np_val = np.random.rand(4, 4, 4, 4).astype(np.float32)
      c = constant_op.constant(np_val)
      c_sparse = math_ops._as_indexed_slices(c)
      c_sparse = ops.IndexedSlices(
          c_sparse.values, math_ops.cast(c_sparse.indices, types.int64),
          c_sparse.dense_shape)
      self.assertAllEqual(np_val.shape, c_sparse.dense_shape.eval())
      c_dense = math_ops.mul(c_sparse, 1.0)
      self.assertAllClose(np_val, c_dense.eval())

  def testWarnings(self):
    # Smaller than the threshold: no warning.
    c_sparse = ops.IndexedSlices(array_ops.placeholder(types.float32),
                                 array_ops.placeholder(types.int32),
                                 constant([4, 4, 4, 4]))
    with warnings.catch_warnings(record=True) as w:
      math_ops.mul(c_sparse, 1.0)
    self.assertEqual(0, len(w))

    # Greater than or equal to the threshold: warning.
    c_sparse = ops.IndexedSlices(array_ops.placeholder(types.float32),
                                 array_ops.placeholder(types.int32),
                                 constant([100, 100, 100, 100]))
    with warnings.catch_warnings(record=True) as w:
      math_ops.mul(c_sparse, 1.0)
    self.assertEqual(1, len(w))
    self.assertTrue(
        "with 100000000 elements. This may consume a large amount of memory."
        in str(w[0].message))

    # Unknown dense shape: warning.
    c_sparse = ops.IndexedSlices(array_ops.placeholder(types.float32),
                                 array_ops.placeholder(types.int32),
                                 array_ops.placeholder(types.int32))
    with warnings.catch_warnings(record=True) as w:
      math_ops.mul(c_sparse, 1.0)
    self.assertEqual(1, len(w))
    self.assertTrue(
        "of unknown shape. This may consume a large amount of memory."
        in str(w[0].message))


if __name__ == "__main__":
  googletest.main()