aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/distributions/util.py
blob: 0fe6aa30f945dc7682a53fa6495823288cf111b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for probability distributions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import hashlib
import numpy as np

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn


def assert_close(
    x, y, data=None, summarize=None, message=None, name="assert_close"):
  """Assert that x and y are within machine epsilon of each other.

  Args:
    x: Floating-point `Tensor`
    y: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
  """
  message = message or ""
  x = ops.convert_to_tensor(x, name="x")
  y = ops.convert_to_tensor(y, name="y")

  if data is None:
    data = [
        message,
        "Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
        y.name, y
    ]

  if x.dtype.is_integer:
    return check_ops.assert_equal(
        x, y, data=data, summarize=summarize, message=message, name=name)

  with ops.name_scope(name, "assert_close", [x, y, data]):
    tol = np.finfo(x.dtype.as_numpy_dtype).eps
    condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
    return control_flow_ops.Assert(
        condition, data, summarize=summarize)


def assert_integer_form(
    x, data=None, summarize=None, message=None,
    int_dtype=None, name="assert_integer_form"):
  """Assert that x has integer components (or floats equal to integers).

  Args:
    x: Floating-point `Tensor`
    data: The tensors to print out if the condition is `False`. Defaults to
      error message and first few entries of `x` and `y`.
    summarize: Print this many entries of each tensor.
    message: A string to prefix to the default message.
    int_dtype: A `tf.dtype` used to cast the float to. The default (`None`)
      implies the smallest possible signed int will be used for casting.
    name: A name for this operation (optional).

  Returns:
    Op raising `InvalidArgumentError` if `cast(x, int_dtype) != x`.
  """
  with ops.name_scope(name, values=[x, data]):
    x = ops.convert_to_tensor(x, name="x")
    if x.dtype.is_integer:
      return control_flow_ops.no_op()
    message = message or "{} has non-integer components".format(x.op.name)
    if int_dtype is None:
      try:
        int_dtype = {
            dtypes.float16: dtypes.int16,
            dtypes.float32: dtypes.int32,
            dtypes.float64: dtypes.int64,
        }[x.dtype.base_dtype]
      except KeyError:
        raise TypeError("Unrecognized type {}".format(x.dtype.name))
    return check_ops.assert_equal(
        x, math_ops.cast(math_ops.cast(x, int_dtype), x.dtype),
        data=data, summarize=summarize, message=message, name=name)


def assert_symmetric(matrix):
  matrix_t = array_ops.matrix_transpose(matrix)
  return control_flow_ops.with_dependencies(
      [check_ops.assert_equal(matrix, matrix_t)], matrix)


def embed_check_nonnegative_integer_form(
    x, name="embed_check_nonnegative_integer_form"):
  """Assert x is a non-negative tensor, and optionally of integers."""
  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    assertions = [
        check_ops.assert_non_negative(
            x, message="'{}' must be non-negative.".format(x.op.name)),
    ]
    if not x.dtype.is_integer:
      assertions += [
          assert_integer_form(
              x, message="'{}' cannot contain fractional components.".format(
                  x.op.name)),
      ]
    return control_flow_ops.with_dependencies(assertions, x)


def same_dynamic_shape(a, b):
  """Returns whether a and b have the same dynamic shape.

  Args:
    a: `Tensor`
    b: `Tensor`

  Returns:
    `bool` `Tensor` representing if both tensors have the same shape.
  """
  a = ops.convert_to_tensor(a, name="a")
  b = ops.convert_to_tensor(b, name="b")

  # Here we can't just do math_ops.equal(a.shape, b.shape), since
  # static shape inference may break the equality comparison between
  # shape(a) and shape(b) in math_ops.equal.
  def all_shapes_equal():
    return math_ops.reduce_all(math_ops.equal(
        array_ops.concat([array_ops.shape(a), array_ops.shape(b)], 0),
        array_ops.concat([array_ops.shape(b), array_ops.shape(a)], 0)))

  # One of the shapes isn't fully defined, so we need to use the dynamic
  # shape.
  return control_flow_ops.cond(
      math_ops.equal(array_ops.rank(a), array_ops.rank(b)),
      all_shapes_equal,
      lambda: constant_op.constant(False))


def get_logits_and_probs(logits=None,
                         probs=None,
                         multidimensional=False,
                         validate_args=False,
                         name="get_logits_and_probs"):
  """Converts logit to probabilities (or vice-versa), and returns both.

  Args:
    logits: Floating-point `Tensor` representing log-odds.
    probs: Floating-point `Tensor` representing probabilities.
    multidimensional: Python `bool`, default `False`.
      If `True`, represents whether the last dimension of `logits` or `probs`,
      a `[N1, N2, ...  k]` dimensional tensor, representing the
      logit or probability of `shape[-1]` classes.
    validate_args: Python `bool`, default `False`. When `True`, either assert
      `0 <= probs <= 1` (if not `multidimensional`) or that the last dimension
      of `probs` sums to one.
    name: A name for this operation (optional).

  Returns:
    logits, probs: Tuple of `Tensor`s. If `probs` has an entry that is `0` or
      `1`, then the corresponding entry in the returned logit will be `-Inf` and
      `Inf` respectively.

  Raises:
    ValueError: if neither `probs` nor `logits` were passed in, or both were.
  """
  with ops.name_scope(name, values=[probs, logits]):
    if (probs is None) == (logits is None):
      raise ValueError("Must pass probs or logits, but not both.")

    if probs is None:
      logits = ops.convert_to_tensor(logits, name="logits")
      if not logits.dtype.is_floating:
        raise TypeError("logits must having floating type.")
      # We can early return since we constructed probs and therefore know
      # they're valid.
      if multidimensional:
        if validate_args:
          logits = embed_check_categorical_event_shape(logits)
        return logits, nn.softmax(logits, name="probs")
      return logits, math_ops.sigmoid(logits, name="probs")

    probs = ops.convert_to_tensor(probs, name="probs")
    if not probs.dtype.is_floating:
      raise TypeError("probs must having floating type.")

    if validate_args:
      with ops.name_scope("validate_probs"):
        one = constant_op.constant(1., probs.dtype)
        dependencies = [check_ops.assert_non_negative(probs)]
        if multidimensional:
          probs = embed_check_categorical_event_shape(probs)
          dependencies += [assert_close(math_ops.reduce_sum(probs, -1), one,
                                        message="probs does not sum to 1.")]
        else:
          dependencies += [check_ops.assert_less_equal(
              probs, one, message="probs has components greater than 1.")]
        probs = control_flow_ops.with_dependencies(dependencies, probs)

    with ops.name_scope("logits"):
      if multidimensional:
        # Here we don't compute the multidimensional case, in a manner
        # consistent with respect to the unidimensional case. We do so
        # following the TF convention. Typically, you might expect to see
        # logits = log(probs) - log(probs[pivot]). A side-effect of
        # being consistent with the TF approach is that the unidimensional case
        # implicitly handles the second dimension but the multidimensional case
        # explicitly keeps the pivot dimension.
        return math_ops.log(probs), probs
      return math_ops.log(probs) - math_ops.log1p(-1. * probs), probs


def _is_known_unsigned_by_dtype(dt):
  """Helper returning True if dtype is known to be unsigned."""
  return {
      dtypes.bool: True,
      dtypes.uint8: True,
      dtypes.uint16: True,
  }.get(dt.base_dtype, False)


def _is_known_signed_by_dtype(dt):
  """Helper returning True if dtype is known to be signed."""
  return {
      dtypes.float16: True,
      dtypes.float32: True,
      dtypes.float64: True,
      dtypes.int8: True,
      dtypes.int16: True,
      dtypes.int32: True,
      dtypes.int64: True,
  }.get(dt.base_dtype, False)


def _is_known_dtype(dt):
  """Helper returning True if dtype is known."""
  return _is_known_unsigned_by_dtype(dt) or _is_known_signed_by_dtype(dt)


def _largest_integer_by_dtype(dt):
  """Helper returning the largest integer exactly representable by dtype."""
  if not _is_known_dtype(dt):
    raise TypeError("Unrecognized dtype: {}".format(dt.name))
  if dt.is_floating:
    return int(2**(np.finfo(dt.as_numpy_dtype).nmant + 1))
  if dt.is_integer:
    return np.iinfo(dt.as_numpy_dtype).max
  if dt.base_dtype == dtypes.bool:
    return int(1)
  # We actually can't land here but keep the case for completeness.
  raise TypeError("Unrecognized dtype: {}".format(dt.name))


def _smallest_integer_by_dtype(dt):
  """Helper returning the smallest integer exactly representable by dtype."""
  if not _is_known_dtype(dt):
    raise TypeError("Unrecognized dtype: {}".format(dt.name))
  if _is_known_unsigned_by_dtype(dt):
    return 0
  return -1 * _largest_integer_by_dtype(dt)


def _is_integer_like_by_dtype(dt):
  """Helper returning True if dtype.is_integer or is `bool`."""
  if not _is_known_dtype(dt):
    raise TypeError("Unrecognized dtype: {}".format(dt.name))
  return dt.is_integer or dt.base_dtype == dtypes.bool


def embed_check_categorical_event_shape(
    categorical_param,
    name="embed_check_categorical_event_shape"):
  """Embeds checks that categorical distributions don't have too many classes.

  A categorical-type distribution is one which, e.g., returns the class label
  rather than a one-hot encoding.  E.g., `Categorical(probs)`.

  Since distributions output samples in the same dtype as the parameters, we
  must ensure that casting doesn't lose precision. That is, the
  `parameter.dtype` implies a maximum number of classes. However, since shape is
  `int32` and categorical variables are presumed to be indexes into a `Tensor`,
  we must also ensure that the number of classes is no larger than the largest
  possible `int32` index, i.e., `2**31-1`.

  In other words the number of classes, `K`, must satisfy the following
  condition:

  ```python
  K <= min(
      int(2**31 - 1),  # Largest float as an index.
      {
          dtypes.float16: int(2**11),   # Largest int as a float16.
          dtypes.float32: int(2**24),
          dtypes.float64: int(2**53),
      }.get(categorical_param.dtype.base_dtype, 0))
  ```

  Args:
    categorical_param: Floating-point `Tensor` representing parameters of
      distribution over categories. The rightmost shape is presumed to be the
      number of categories.
    name: A name for this operation (optional).

  Returns:
    categorical_param: Input `Tensor` with appropriate assertions embedded.

  Raises:
    TypeError: if `categorical_param` has an unknown `dtype`.
    ValueError: if we can statically identify `categorical_param` as being too
      large (for being closed under int32/float casting).
  """
  with ops.name_scope(name, values=[categorical_param]):
    x = ops.convert_to_tensor(categorical_param, name="categorical_param")
    # The size must not exceed both of:
    # - The largest possible int32 (since categorical values are presumed to be
    #   indexes into a Tensor).
    # - The largest possible integer exactly representable under the given
    #   floating-point dtype (since we need to cast to/from).
    #
    # The chosen floating-point thresholds are 2**(1 + mantissa_bits).
    # For more details, see:
    # https://en.wikipedia.org/wiki/Floating-point_arithmetic#Internal_representation
    x_dtype = x.dtype.base_dtype
    max_event_size = (_largest_integer_by_dtype(x_dtype)
                      if x_dtype.is_floating else 0)
    if max_event_size is 0:
      raise TypeError("Unable to validate size of unrecognized dtype "
                      "({}).".format(x_dtype.name))
    try:
      x_shape_static = x.get_shape().with_rank_at_least(1)
    except ValueError:
      raise ValueError("A categorical-distribution parameter must have "
                       "at least 1 dimension.")
    if x_shape_static[-1].value is not None:
      event_size = x_shape_static[-1].value
      if event_size < 2:
        raise ValueError("A categorical-distribution parameter must have at "
                         "least 2 events.")
      if event_size > max_event_size:
        raise ValueError(
            "Number of classes exceeds `dtype` precision, i.e., "
            "{} implies shape ({}) cannot exceed {}.".format(
                x_dtype.name, event_size, max_event_size))
      return x
    else:
      event_size = array_ops.shape(x, name="x_shape")[-1]
      return control_flow_ops.with_dependencies([
          check_ops.assert_rank_at_least(
              x, 1, message=("A categorical-distribution parameter must have "
                             "at least 1 dimension.")),
          check_ops.assert_greater_equal(
              array_ops.shape(x)[-1], 2,
              message=("A categorical-distribution parameter must have at "
                       "least 2 events.")),
          check_ops.assert_less_equal(
              event_size, max_event_size,
              message="Number of classes exceeds `dtype` precision, "
                      "i.e., {} dtype cannot exceed {} shape.".format(
                          x_dtype.name, max_event_size)),
      ], x)


def embed_check_integer_casting_closed(
    x,
    target_dtype,
    assert_nonnegative=True,
    name="embed_check_casting_closed"):
  """Ensures integers remain unaffected despite casting to/from int/float types.

  Example integer-types: `uint8`, `int32`, `bool`.
  Example floating-types: `float32`, `float64`.

  The largest possible integer representable by an IEEE754 floating-point is
  `2**(1 + mantissa_bits)` yet the largest possible integer as an int-type is
  `2**(bits - 1) - 1`. This function ensures that a `Tensor` purporting to have
  integer-form values can be cast to some other type without loss of precision.

  The smallest representable integer is the negative of the largest
  representable integer, except for types: `uint8`, `uint16`, `bool`. For these
  types, the smallest representable integer is `0`.

  Args:
    x: `Tensor` representing integer-form values.
    target_dtype: TF `dtype` under which `x` should have identical values.
    assert_nonnegative: `bool` indicating `x` should contain nonnegative values.
    name: A name for this operation (optional).

  Returns:
    x: Input `Tensor` with appropriate assertions embedded.

  Raises:
    TypeError: if `x` is neither integer- nor floating-type.
    TypeError: if `target_dtype` is neither integer- nor floating-type.
    TypeError: if neither `x` nor `target_dtype` are integer-type.
  """

  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    if (not _is_integer_like_by_dtype(x.dtype)
        and not x.dtype.is_floating):
      raise TypeError("{}.dtype must be floating- or "
                      "integer-type.".format(x.dtype.name))
    if (not _is_integer_like_by_dtype(target_dtype)
        and not target_dtype.is_floating):
      raise TypeError("target_dtype ({}) must be floating- or "
                      "integer-type.".format(target_dtype.name))
    if (not _is_integer_like_by_dtype(x.dtype)
        and not _is_integer_like_by_dtype(target_dtype)):
      raise TypeError("At least one of {}.dtype ({}) and target_dtype ({}) "
                      "must be integer-type.".format(
                          x.op.name, x.dtype.name, target_dtype.name))

    assertions = []
    if assert_nonnegative:
      assertions += [
          check_ops.assert_non_negative(
              x, message="Elements must be non-negative."),
      ]

    if x.dtype.is_floating:
      # Being here means _is_integer_like_by_dtype(target_dtype) = True.
      # Since this check implies the magnitude check below, we need only it.
      assertions += [
          assert_integer_form(
              x, int_dtype=target_dtype,
              message="Elements must be {}-equivalent.".format(
                  target_dtype.name)),
      ]
    else:
      if (_largest_integer_by_dtype(x.dtype)
          > _largest_integer_by_dtype(target_dtype)):
        # Cast may lose integer precision.
        assertions += [
            check_ops.assert_less_equal(
                x, _largest_integer_by_dtype(target_dtype),
                message=("Elements cannot exceed {}.".format(
                    _largest_integer_by_dtype(target_dtype)))),
        ]
      if (not assert_nonnegative and
          (_smallest_integer_by_dtype(x.dtype)
           < _smallest_integer_by_dtype(target_dtype))):
        assertions += [
            check_ops.assert_greater_equal(
                x, _smallest_integer_by_dtype(target_dtype),
                message=("Elements cannot be smaller than {}.".format(
                    _smallest_integer_by_dtype(target_dtype)))),
        ]

    if not assertions:
      return x
    return control_flow_ops.with_dependencies(assertions, x)


def log_combinations(n, counts, name="log_combinations"):
  """Multinomial coefficient.

  Given `n` and `counts`, where `counts` has last dimension `k`, we compute
  the multinomial coefficient as:

  ```n! / sum_i n_i!```

  where `i` runs over all `k` classes.

  Args:
    n: Floating-point `Tensor` broadcastable with `counts`. This represents `n`
      outcomes.
    counts: Floating-point `Tensor` broadcastable with `n`. This represents
      counts in `k` classes, where `k` is the last dimension of the tensor.
    name: A name for this operation (optional).

  Returns:
    `Tensor` representing the multinomial coefficient between `n` and `counts`.
  """
  # First a bit about the number of ways counts could have come in:
  # E.g. if counts = [1, 2], then this is 3 choose 2.
  # In general, this is (sum counts)! / sum(counts!)
  # The sum should be along the last dimension of counts. This is the
  # "distribution" dimension. Here n a priori represents the sum of counts.
  with ops.name_scope(name, values=[n, counts]):
    n = ops.convert_to_tensor(n, name="n")
    counts = ops.convert_to_tensor(counts, name="counts")
    total_permutations = math_ops.lgamma(n + 1)
    counts_factorial = math_ops.lgamma(counts + 1)
    redundant_permutations = math_ops.reduce_sum(counts_factorial, axis=[-1])
    return total_permutations - redundant_permutations


def matrix_diag_transform(matrix, transform=None, name=None):
  """Transform diagonal of [batch-]matrix, leave rest of matrix unchanged.

  Create a trainable covariance defined by a Cholesky factor:

  ```python
  # Transform network layer into 2 x 2 array.
  matrix_values = tf.contrib.layers.fully_connected(activations, 4)
  matrix = tf.reshape(matrix_values, (batch_size, 2, 2))

  # Make the diagonal positive. If the upper triangle was zero, this would be a
  # valid Cholesky factor.
  chol = matrix_diag_transform(matrix, transform=tf.nn.softplus)

  # LinearOperatorLowerTriangular ignores the upper triangle.
  operator = LinearOperatorLowerTriangular(chol)
  ```

  Example of heteroskedastic 2-D linear regression.

  ```python
  # Get a trainable Cholesky factor.
  matrix_values = tf.contrib.layers.fully_connected(activations, 4)
  matrix = tf.reshape(matrix_values, (batch_size, 2, 2))
  chol = matrix_diag_transform(matrix, transform=tf.nn.softplus)

  # Get a trainable mean.
  mu = tf.contrib.layers.fully_connected(activations, 2)

  # This is a fully trainable multivariate normal!
  dist = tf.contrib.distributions.MVNCholesky(mu, chol)

  # Standard log loss. Minimizing this will "train" mu and chol, and then dist
  # will be a distribution predicting labels as multivariate Gaussians.
  loss = -1 * tf.reduce_mean(dist.log_prob(labels))
  ```

  Args:
    matrix:  Rank `R` `Tensor`, `R >= 2`, where the last two dimensions are
      equal.
    transform:  Element-wise function mapping `Tensors` to `Tensors`. To
      be applied to the diagonal of `matrix`. If `None`, `matrix` is returned
      unchanged. Defaults to `None`.
    name:  A name to give created ops.
      Defaults to "matrix_diag_transform".

  Returns:
    A `Tensor` with same shape and `dtype` as `matrix`.
  """
  with ops.name_scope(name, "matrix_diag_transform", [matrix]):
    matrix = ops.convert_to_tensor(matrix, name="matrix")
    if transform is None:
      return matrix
    # Replace the diag with transformed diag.
    diag = array_ops.matrix_diag_part(matrix)
    transformed_diag = transform(diag)
    transformed_mat = array_ops.matrix_set_diag(matrix, transformed_diag)

  return transformed_mat


def rotate_transpose(x, shift, name="rotate_transpose"):
  """Circularly moves dims left or right.

  Effectively identical to:

  ```python
  numpy.transpose(x, numpy.roll(numpy.arange(len(x.shape)), shift))
  ```

  When `validate_args=False` additional graph-runtime checks are
  performed. These checks entail moving data from to GPU to CPU.

  Example:

  ```python
  x = tf.random_normal([1, 2, 3, 4])  # Tensor of shape [1, 2, 3, 4].
  rotate_transpose(x, -1).shape == [2, 3, 4, 1]
  rotate_transpose(x, -2).shape == [3, 4, 1, 2]
  rotate_transpose(x,  1).shape == [4, 1, 2, 3]
  rotate_transpose(x,  2).shape == [3, 4, 1, 2]
  rotate_transpose(x,  7).shape == rotate_transpose(x, 3).shape  # [2, 3, 4, 1]
  rotate_transpose(x, -7).shape == rotate_transpose(x, -3).shape  # [4, 1, 2, 3]
  ```

  Args:
    x: `Tensor`.
    shift: `Tensor`. Number of dimensions to transpose left (shift<0) or
      transpose right (shift>0).
    name: Python `str`. The name to give this op.

  Returns:
    rotated_x: Input `Tensor` with dimensions circularly rotated by shift.

  Raises:
    TypeError: if shift is not integer type.
  """
  with ops.name_scope(name, values=[x, shift]):
    x = ops.convert_to_tensor(x, name="x")
    shift = ops.convert_to_tensor(shift, name="shift")
    # We do not assign back to preserve constant-ness.
    check_ops.assert_integer(shift)
    shift_value_static = tensor_util.constant_value(shift)
    ndims = x.get_shape().ndims
    if ndims is not None and shift_value_static is not None:
      if ndims < 2: return x
      shift_value_static = np.sign(shift_value_static) * (
          abs(shift_value_static) % ndims)
      if shift_value_static == 0: return x
      perm = np.roll(np.arange(ndims), shift_value_static)
      return array_ops.transpose(x, perm=perm)
    else:
      # Consider if we always had a positive shift, and some specified
      # direction.
      # When shifting left we want the new array:
      #   last(x, n-shift) + first(x, shift)
      # and if shifting right then we want:
      #   last(x, shift) + first(x, n-shift)
      # Observe that last(a) == slice(a, n) and first(a) == slice(0, a).
      # Also, we can encode direction and shift as one: direction * shift.
      # Combining these facts, we have:
      #   a = cond(shift<0, -shift, n-shift)
      #   last(x, n-a) + first(x, a) == x[a:n] + x[0:a]
      # Finally, we transform shift by modulo length so it can be specified
      # independently from the array upon which it operates (like python).
      ndims = array_ops.rank(x)
      shift = array_ops.where(math_ops.less(shift, 0),
                              math_ops.mod(-shift, ndims),
                              ndims - math_ops.mod(shift, ndims))
      first = math_ops.range(0, shift)
      last = math_ops.range(shift, ndims)
      perm = array_ops.concat([last, first], 0)
      return array_ops.transpose(x, perm=perm)


def pick_vector(cond,
                true_vector,
                false_vector,
                name="pick_vector"):
  """Picks possibly different length row `Tensor`s based on condition.

  Value `Tensor`s should have exactly one dimension.

  If `cond` is a python Boolean or `tf.constant` then either `true_vector` or
  `false_vector` is immediately returned. I.e., no graph nodes are created and
  no validation happens.

  Args:
    cond: `Tensor`. Must have `dtype=tf.bool` and be scalar.
    true_vector: `Tensor` of one dimension. Returned when cond is `True`.
    false_vector: `Tensor` of one dimension. Returned when cond is `False`.
    name: Python `str`. The name to give this op.

  Example:

  ```python
  pick_vector(tf.less(0, 5), tf.range(10, 12), tf.range(15, 18))  # [10, 11]
  pick_vector(tf.less(5, 0), tf.range(10, 12), tf.range(15, 18))  # [15, 16, 17]
  ```

  Returns:
    true_or_false_vector: `Tensor`.

  Raises:
    TypeError: if `cond.dtype != tf.bool`
    TypeError: if `cond` is not a constant and
      `true_vector.dtype != false_vector.dtype`
  """
  with ops.name_scope(name, values=(cond, true_vector, false_vector)):
    cond = ops.convert_to_tensor(cond, name="cond")
    if cond.dtype != dtypes.bool:
      raise TypeError("%s.dtype=%s which is not %s" %
                      (cond.name, cond.dtype, dtypes.bool))
    cond_value_static = tensor_util.constant_value(cond)
    if cond_value_static is not None:
      return true_vector if cond_value_static else false_vector
    true_vector = ops.convert_to_tensor(true_vector, name="true_vector")
    false_vector = ops.convert_to_tensor(false_vector, name="false_vector")
    if true_vector.dtype != false_vector.dtype:
      raise TypeError(
          "%s.dtype=%s does not match %s.dtype=%s"
          % (true_vector.name, true_vector.dtype,
             false_vector.name, false_vector.dtype))
    n = array_ops.shape(true_vector)[0]
    return array_ops.slice(
        array_ops.concat([true_vector, false_vector], 0),
        [array_ops.where(cond, 0, n)], [array_ops.where(cond, n, -1)])


def prefer_static_broadcast_shape(
    shape1, shape2, name="prefer_static_broadcast_shape"):
  """Convenience function which statically broadcasts shape when possible.

  Args:
    shape1:  `1-D` integer `Tensor`.  Already converted to tensor!
    shape2:  `1-D` integer `Tensor`.  Already converted to tensor!
    name:  A string name to prepend to created ops.

  Returns:
    The broadcast shape, either as `TensorShape` (if broadcast can be done
      statically), or as a `Tensor`.
  """
  with ops.name_scope(name, values=[shape1, shape2]):
    def make_shape_tensor(x):
      return ops.convert_to_tensor(x, name="shape", dtype=dtypes.int32)

    def get_tensor_shape(s):
      if isinstance(s, tensor_shape.TensorShape):
        return s
      s_ = tensor_util.constant_value(make_shape_tensor(s))
      if s_ is not None:
        return tensor_shape.TensorShape(s_)
      return None

    def get_shape_tensor(s):
      if not isinstance(s, tensor_shape.TensorShape):
        return make_shape_tensor(s)
      if s.is_fully_defined():
        return make_shape_tensor(s.as_list())
      raise ValueError("Cannot broadcast from partially "
                       "defined `TensorShape`.")

    shape1_ = get_tensor_shape(shape1)
    shape2_ = get_tensor_shape(shape2)
    if shape1_ is not None and shape2_ is not None:
      return array_ops.broadcast_static_shape(shape1_, shape2_)

    shape1_ = get_shape_tensor(shape1)
    shape2_ = get_shape_tensor(shape2)
    return array_ops.broadcast_dynamic_shape(shape1_, shape2_)


def prefer_static_rank(x):
  """Return static rank of tensor `x` if available, else `tf.rank(x)`.

  Args:
    x: `Tensor` (already converted).

  Returns:
    Numpy array (if static rank is obtainable), else `Tensor`.
  """
  return prefer_static_value(array_ops.rank(x))


def prefer_static_shape(x):
  """Return static shape of tensor `x` if available, else `tf.shape(x)`.

  Args:
    x: `Tensor` (already converted).

  Returns:
    Numpy array (if static shape is obtainable), else `Tensor`.
  """
  return prefer_static_value(array_ops.shape(x))


def prefer_static_value(x):
  """Return static value of tensor `x` if available, else `x`.

  Args:
    x: `Tensor` (already converted).

  Returns:
    Numpy array (if static value is obtainable), else `Tensor`.
  """
  static_x = tensor_util.constant_value(x)
  if static_x is not None:
    return static_x
  return x


def gen_new_seed(seed, salt):
  """Generate a new seed, from the given seed and salt."""
  if seed is None:
    return None
  string = (str(seed) + salt).encode("utf-8")
  return int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF


def fill_triangular(x, upper=False, name=None):
  """Creates a (batch of) triangular matrix from a vector of inputs.

  Created matrix can be lower- or upper-triangular. (It is more efficient to
  create the matrix as upper or lower, rather than transpose.)

  Triangular matrix elements are filled in a clockwise spiral. See example,
  below.

  If `x.get_shape()` is `[b1, b2, ..., bK, d]` then the output shape is `[b1,
  b2, ..., bK, n, n]` where `n` is such that `d = n(n+1)/2`, i.e.,
  `n = int(np.sqrt(0.25 + 2. * m) - 0.5)`.

  Example:

  ```python
  fill_triangular([1, 2, 3, 4, 5, 6])
  # ==> [[4, 0, 0],
  #      [6, 5, 0],
  #      [3, 2, 1]]

  fill_triangular([1, 2, 3, 4, 5, 6], upper=True)
  # ==> [[1, 2, 3],
  #      [0, 5, 6],
  #      [0, 0, 4]]
  ```

  For comparison, a pure numpy version of this function can be found in
  `util_test.py`, function `_fill_triangular`.

  Args:
    x: `Tensor` representing lower (or upper) triangular elements.
    upper: Python `bool` representing whether output matrix should be upper
      triangular (`True`) or lower triangular (`False`, default).
    name: Python `str`. The name to give this op.

  Returns:
    tril: `Tensor` with lower (or upper) triangular elements filled from `x`.

  Raises:
    ValueError: if `x` cannot be mapped to a triangular matrix.
  """

  with ops.name_scope(name, "fill_triangular", values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    if x.shape.with_rank_at_least(1)[-1].value is not None:
      # Formula derived by solving for n: m = n(n+1)/2.
      m = np.int32(x.shape[-1].value)
      n = np.sqrt(0.25 + 2. * m) - 0.5
      if n != np.floor(n):
        raise ValueError("Input right-most shape ({}) does not "
                         "correspond to a triangular matrix.".format(m))
      n = np.int32(n)
      static_final_shape = x.shape[:-1].concatenate([n, n])
    else:
      m = array_ops.shape(x)[-1]
      # For derivation, see above. Casting automatically lops off the 0.5, so we
      # omit it.  We don't validate n is an integer because this has
      # graph-execution cost; an error will be thrown from the reshape, below.
      n = math_ops.cast(
          math_ops.sqrt(0.25 + math_ops.cast(2 * m, dtype=dtypes.float32)),
          dtype=dtypes.int32)
      static_final_shape = x.shape.with_rank_at_least(1)[:-1].concatenate(
          [None, None])
    # We now concatenate the "tail" of `x` to `x` (and reverse one of them).
    #
    # We do this based on the insight that the input `x` provides `ceil(n/2)`
    # rows of an `n x n` matrix, some of which will get zeroed out being on the
    # wrong side of the diagonal. The first row will not get zeroed out at all,
    # and we need `floor(n/2)` more rows, so the first is what we omit from
    # `x_tail`. If we then stack those `ceil(n/2)` rows with the `floor(n/2)`
    # rows provided by a reversed tail, it is exactly the other set of elements
    # of the reversed tail which will be zeroed out for being on the wrong side
    # of the diagonal further up/down the matrix. And, in doing-so, we've filled
    # the triangular matrix in a clock-wise spiral pattern. Neat!
    #
    # Try it out in numpy:
    #  n = 3
    #  x = np.arange(n * (n + 1) / 2)
    #  m = x.shape[0]
    #  n = np.int32(np.sqrt(.25 + 2 * m) - .5)
    #  x_tail = x[(m - (n**2 - m)):]
    #  np.concatenate([x_tail, x[::-1]], 0).reshape(n, n)  # lower
    #  # ==> array([[3, 4, 5],
    #               [5, 4, 3],
    #               [2, 1, 0]])
    #  np.concatenate([x, x_tail[::-1]], 0).reshape(n, n)  # upper
    #  # ==> array([[0, 1, 2],
    #               [3, 4, 5],
    #               [5, 4, 3]])
    #
    # Note that we can't simply do `x[..., -(n**2 - m):]` because this doesn't
    # correctly handle `m == n == 1`. Hence, we do nonnegative indexing.
    # Furthermore observe that:
    #   m - (n**2 - m)
    #   = n**2 / 2 + n / 2 - (n**2 - n**2 / 2 + n / 2)
    #   = 2 (n**2 / 2 + n / 2) - n**2
    #   = n**2 + n - n**2
    #   = n
    if upper:
      x_list = [x, array_ops.reverse(x[..., n:], axis=[-1])]
    else:
      x_list = [x[..., n:], array_ops.reverse(x, axis=[-1])]
    new_shape = (
        static_final_shape.as_list()
        if static_final_shape.is_fully_defined()
        else array_ops.concat([array_ops.shape(x)[:-1], [n, n]], axis=0))
    x = array_ops.reshape(array_ops.concat(x_list, axis=-1), new_shape)
    x = array_ops.matrix_band_part(
        x,
        num_lower=(0 if upper else -1),
        num_upper=(-1 if upper else 0))
    x.set_shape(static_final_shape)
    return x


def tridiag(below=None, diag=None, above=None, name=None):
  """Creates a matrix with values set above, below, and on the diagonal.

  Example:

  ```python
  tridiag(below=[1., 2., 3.],
          diag=[4., 5., 6., 7.],
          above=[8., 9., 10.])
  # ==> array([[  4.,   8.,   0.,   0.],
  #            [  1.,   5.,   9.,   0.],
  #            [  0.,   2.,   6.,  10.],
  #            [  0.,   0.,   3.,   7.]], dtype=float32)
  ```

  Warning: This Op is intended for convenience, not efficiency.

  Args:
    below: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the below
      diagonal part. `None` is logically equivalent to `below = 0`.
    diag: `Tensor` of shape `[B1, ..., Bb, d]` corresponding to the diagonal
      part.  `None` is logically equivalent to `diag = 0`.
    above: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the above
      diagonal part.  `None` is logically equivalent to `above = 0`.
    name: Python `str`. The name to give this op.

  Returns:
    tridiag: `Tensor` with values set above, below and on the diagonal.

  Raises:
    ValueError: if all inputs are `None`.
  """

  def _pad(x):
    """Prepends and appends a zero to every vector in a batch of vectors."""
    shape = array_ops.concat([array_ops.shape(x)[:-1], [1]], axis=0)
    z = array_ops.zeros(shape, dtype=x.dtype)
    return array_ops.concat([z, x, z], axis=-1)

  def _add(*x):
    """Adds list of Tensors, ignoring `None`."""
    s = None
    for y in x:
      if y is None:
        continue
      elif s is None:
        s = y
      else:
        s += y
    if s is None:
      raise ValueError("Must specify at least one of `below`, `diag`, `above`.")
    return s

  with ops.name_scope(name, "tridiag", [below, diag, above]):
    if below is not None:
      below = ops.convert_to_tensor(below, name="below")
      below = array_ops.matrix_diag(_pad(below))[..., :-1, 1:]
    if diag is not None:
      diag = ops.convert_to_tensor(diag, name="diag")
      diag = array_ops.matrix_diag(diag)
    if above is not None:
      above = ops.convert_to_tensor(above, name="above")
      above = array_ops.matrix_diag(_pad(above))[..., 1:, :-1]
    # TODO(jvdillon): Consider using scatter_nd instead of creating three full
    # matrices.
    return _add(below, diag, above)


def reduce_weighted_logsumexp(
    logx,
    w=None,
    axis=None,
    keep_dims=False,
    return_sign=False,
    name=None):
  """Computes `log(abs(sum(weight * exp(elements across tensor dimensions))))`.

  If all weights `w` are known to be positive, it is more efficient to directly
  use `reduce_logsumexp`, i.e., `tf.reduce_logsumexp(logx + tf.log(w))` is more
  efficient than `du.reduce_weighted_logsumexp(logx, w)`.

  Reduces `input_tensor` along the dimensions given in `axis`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `axis`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `axis` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  This function is more numerically stable than log(sum(w * exp(input))). It
  avoids overflows caused by taking the exp of large inputs and underflows
  caused by taking the log of small inputs.

  For example:

  ```python
  x = tf.constant([[0., 0, 0],
                   [0, 0, 0]])

  w = tf.constant([[-1., 1, 1],
                   [1, 1, 1]])

  du.reduce_weighted_logsumexp(x, w)
  # ==> log(-1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) = log(4)

  du.reduce_weighted_logsumexp(x, w, axis=0)
  # ==> [log(-1+1), log(1+1), log(1+1)]

  du.reduce_weighted_logsumexp(x, w, axis=1)
  # ==> [log(-1+1+1), log(1+1+1)]

  du.reduce_weighted_logsumexp(x, w, axis=1, keep_dims=True)
  # ==> [[log(-1+1+1)], [log(1+1+1)]]

  du.reduce_weighted_logsumexp(x, w, axis=[0, 1])
  # ==> log(-1+5)
  ```

  Args:
    logx: The tensor to reduce. Should have numeric type.
    w: The weight tensor. Should have numeric type identical to `logx`.
    axis: The dimensions to reduce. If `None` (the default),
      reduces all dimensions. Must be in the range
      `[-rank(input_tensor), rank(input_tensor))`.
    keep_dims: If true, retains reduced dimensions with length 1.
    return_sign: If `True`, returns the sign of the result.
    name: A name for the operation (optional).

  Returns:
    lswe: The `log(abs(sum(weight * exp(x))))` reduced tensor.
    sign: (Optional) The sign of `sum(weight * exp(x))`.
  """
  with ops.name_scope(name, "reduce_weighted_logsumexp", [logx, w]):
    logx = ops.convert_to_tensor(logx, name="logx")
    if w is None:
      lswe = math_ops.reduce_logsumexp(logx, axis=axis, keepdims=keep_dims)
      if return_sign:
        sgn = array_ops.ones_like(lswe)
        return lswe, sgn
      return lswe
    w = ops.convert_to_tensor(w, dtype=logx.dtype, name="w")
    log_absw_x = logx + math_ops.log(math_ops.abs(w))
    max_log_absw_x = math_ops.reduce_max(log_absw_x, axis=axis, keepdims=True)
    # If the largest element is `-inf` or `inf` then we don't bother subtracting
    # off the max. We do this because otherwise we'd get `inf - inf = NaN`. That
    # this is ok follows from the fact that we're actually free to subtract any
    # value we like, so long as we add it back after taking the `log(sum(...))`.
    max_log_absw_x = array_ops.where(
        math_ops.is_inf(max_log_absw_x),
        array_ops.zeros_like(max_log_absw_x),
        max_log_absw_x)
    wx_over_max_absw_x = (
        math_ops.sign(w) * math_ops.exp(log_absw_x - max_log_absw_x))
    sum_wx_over_max_absw_x = math_ops.reduce_sum(
        wx_over_max_absw_x, axis=axis, keepdims=keep_dims)
    if not keep_dims:
      max_log_absw_x = array_ops.squeeze(max_log_absw_x, axis)
    sgn = math_ops.sign(sum_wx_over_max_absw_x)
    lswe = max_log_absw_x + math_ops.log(sgn * sum_wx_over_max_absw_x)
    if return_sign:
      return lswe, sgn
    return lswe


# TODO(jvdillon): Merge this test back into:
# tensorflow/python/ops/softplus_op_test.py
# once TF core is accepting new ops.
def softplus_inverse(x, name=None):
  """Computes the inverse softplus, i.e., x = softplus_inverse(softplus(x)).

  Mathematically this op is equivalent to:

  ```none
  softplus_inverse = log(exp(x) - 1.)
  ```

  Args:
    x: `Tensor`. Non-negative (not enforced), floating-point.
    name: A name for the operation (optional).

  Returns:
    `Tensor`. Has the same type/shape as input `x`.
  """
  with ops.name_scope(name, "softplus_inverse", values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    # We begin by deriving a more numerically stable softplus_inverse:
    # x = softplus(y) = Log[1 + exp{y}], (which means x > 0).
    # ==> exp{x} = 1 + exp{y}                                (1)
    # ==> y = Log[exp{x} - 1]                                (2)
    #       = Log[(exp{x} - 1) / exp{x}] + Log[exp{x}]
    #       = Log[(1 - exp{-x}) / 1] + Log[exp{x}]
    #       = Log[1 - exp{-x}] + x                           (3)
    # (2) is the "obvious" inverse, but (3) is more stable than (2) for large x.
    # For small x (e.g. x = 1e-10), (3) will become -inf since 1 - exp{-x} will
    # be zero. To fix this, we use 1 - exp{-x} approx x for small x > 0.
    #
    # In addition to the numerically stable derivation above, we clamp
    # small/large values to be congruent with the logic in:
    # tensorflow/core/kernels/softplus_op.h
    #
    # Finally, we set the input to one whenever the input is too large or too
    # small. This ensures that no unchosen codepath is +/- inf. This is
    # necessary to ensure the gradient doesn't get NaNs. Recall that the
    # gradient of `where` behaves like `pred*pred_true + (1-pred)*pred_false`
    # thus an `inf` in an unselected path results in `0*inf=nan`. We are careful
    # to overwrite `x` with ones only when we will never actually use this
    # value. Note that we use ones and not zeros since `log(expm1(0.)) = -inf`.
    threshold = np.log(np.finfo(x.dtype.as_numpy_dtype).eps) + 2.
    is_too_small = math_ops.less(x, np.exp(threshold))
    is_too_large = math_ops.greater(x, -threshold)
    too_small_value = math_ops.log(x)
    too_large_value = x
    # This `where` will ultimately be a NOP because we won't select this
    # codepath whenever we used the surrogate `ones_like`.
    x = array_ops.where(math_ops.logical_or(is_too_small, is_too_large),
                        array_ops.ones_like(x), x)
    y = x + math_ops.log(-math_ops.expm1(-x))  # == log(expm1(x))
    return array_ops.where(is_too_small, too_small_value,
                           array_ops.where(is_too_large, too_large_value, y))


# TODO(b/35290280): Add unit-tests.
def dimension_size(x, axis):
  """Returns the size of a specific dimension."""
  # Since tf.gather isn't "constant-in, constant-out", we must first check the
  # static shape or fallback to dynamic shape.
  s = x.shape.with_rank_at_least(np.abs(axis))[axis].value
  if s is not None:
    return s
  return array_ops.shape(x)[axis]


def process_quadrature_grid_and_probs(
    quadrature_grid_and_probs, dtype, validate_args, name=None):
  """Validates quadrature grid, probs or computes them as necessary.

  Args:
    quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s
      representing the sample points and the corresponding (possibly
      normalized) weight.  When `None`, defaults to:
      `np.polynomial.hermite.hermgauss(deg=8)`.
    dtype: The expected `dtype` of `grid` and `probs`.
    validate_args: Python `bool`, default `False`. When `True` distribution
      parameters are checked for validity despite possibly degrading runtime
      performance. When `False` invalid inputs may silently render incorrect
      outputs.
    name: Python `str` name prefixed to Ops created by this class.

  Returns:
     quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s
      representing the sample points and the corresponding (possibly
      normalized) weight.

  Raises:
    ValueError: if `quadrature_grid_and_probs is not None` and
      `len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])`
  """
  with ops.name_scope(name, "process_quadrature_grid_and_probs",
                      [quadrature_grid_and_probs]):
    if quadrature_grid_and_probs is None:
      grid, probs = np.polynomial.hermite.hermgauss(deg=8)
      grid = grid.astype(dtype.as_numpy_dtype)
      probs = probs.astype(dtype.as_numpy_dtype)
      probs /= np.linalg.norm(probs, ord=1, keepdims=True)
      grid = ops.convert_to_tensor(grid, name="grid", dtype=dtype)
      probs = ops.convert_to_tensor(probs, name="probs", dtype=dtype)
      return grid, probs

    grid, probs = tuple(quadrature_grid_and_probs)
    grid = ops.convert_to_tensor(grid, name="grid", dtype=dtype)
    probs = ops.convert_to_tensor(probs, name="unnormalized_probs",
                                  dtype=dtype)
    probs /= linalg_ops.norm(probs, ord=1, axis=-1, keepdims=True, name="probs")

    def _static_event_size(x):
      """Returns the static size of a specific dimension or `None`."""
      return x.shape.with_rank_at_least(1)[-1].value

    m, n = _static_event_size(probs), _static_event_size(grid)
    if m is not None and n is not None:
      if m != n:
        raise ValueError("`quadrature_grid_and_probs` must be a `tuple` of "
                         "same-length zero-th-dimension `Tensor`s "
                         "(saw lengths {}, {})".format(m, n))
    elif validate_args:
      assertions = [
          check_ops.assert_equal(
              dimension_size(probs, axis=-1),
              dimension_size(grid, axis=-1),
              message=("`quadrature_grid_and_probs` must be a `tuple` of "
                       "same-length zero-th-dimension `Tensor`s")),
      ]
      with ops.control_dependencies(assertions):
        grid = array_ops.identity(grid)
        probs = array_ops.identity(probs)
    return grid, probs


def pad(x, axis, front=False, back=False, value=0, count=1, name=None):
  """Pads `value` to the front and/or back of a `Tensor` dim, `count` times.

  Args:
    x: `Tensor` input.
    axis: Scalar `int`-like `Tensor` representing the single dimension to pad.
      (Negative indexing is supported.)
    front: Python `bool`; if `True` the beginning of the `axis` dimension is
      padded with `value`, `count` times. If `False` no front padding is made.
    back: Python `bool`; if `True` the end of the `axis` dimension is
      padded with `value`, `count` times. If `False` no end padding is made.
    value: Scalar `int`-like `Tensor` representing the actual value added to the
      front and/or back of the `axis` dimension of `x`.
    count: Scalar `int`-like `Tensor` representing number of elements added to
      the front and/or back of the `axis` dimension of `x`. E.g., if
      `front = back = True` then `2 * count` elements are added.
    name: Python `str` name prefixed to Ops created by this function.

  Returns:
    pad: The padded version of input `x`.

  Raises:
    ValueError: if both `front` and `back` are `False`.
    TypeError: if `count` is not `int`-like.
  """
  with ops.name_scope(name, "pad", [x, value, count]):
    x = ops.convert_to_tensor(x, name="x")
    value = ops.convert_to_tensor(value, dtype=x.dtype, name="value")
    count = ops.convert_to_tensor(count, name="count")
    if not count.dtype.is_integer:
      raise TypeError("`count.dtype` (`{}`) must be `int`-like.".format(
          count.dtype.name))
    if not front and not back:
      raise ValueError("At least one of `front`, `back` must be `True`.")
    ndims = (x.shape.ndims if x.shape.ndims is not None
             else array_ops.rank(x, name="ndims"))
    axis = ops.convert_to_tensor(axis, name="axis")
    axis_ = tensor_util.constant_value(axis)
    if axis_ is not None:
      axis = axis_
      if axis < 0:
        axis = ndims + axis
      count_ = tensor_util.constant_value(count)
      if axis_ >= 0 or x.shape.ndims is not None:
        head = x.shape[:axis]
        middle = tensor_shape.TensorShape(
            None if count_ is None
            else (x.shape[axis] + count_ * (front + back)))
        tail = x.shape[axis+1:]
        final_shape = head.concatenate(middle.concatenate(tail))
      else:
        final_shape = None
    else:
      axis = array_ops.where(axis < 0, ndims + axis, axis)
      final_shape = None
    x = array_ops.pad(
        x,
        paddings=array_ops.one_hot(
            indices=array_ops.stack([axis if front else -1,
                                     axis if back else -1]),
            depth=ndims,
            axis=0,
            on_value=count,
            dtype=dtypes.int32),
        constant_values=value)
    if final_shape is not None:
      x.set_shape(final_shape)
    return x


class AppendDocstring(object):
  """Helper class to promote private subclass docstring to public counterpart.

  Example:

  ```python
  class TransformedDistribution(Distribution):
    @distribution_util.AppendDocstring(
      additional_note="A special note!",
      kwargs_dict={"foo": "An extra arg."})
    def _prob(self, y, foo=None):
      pass
  ```

  In this case, the `AppendDocstring` decorator appends the `additional_note` to
  the docstring of `prob` (not `_prob`) and adds a new `kwargs`
  section with each dictionary item as a bullet-point.

  For a more detailed example, see `TransformedDistribution`.
  """

  def __init__(self, additional_note="", kwargs_dict=None):
    """Initializes the AppendDocstring object.

    Args:
      additional_note: Python string added as additional docstring to public
        version of function.
      kwargs_dict: Python string/string dictionary representing
        specific kwargs expanded from the **kwargs input.

    Raises:
      ValueError: if kwargs_dict.key contains whitespace.
      ValueError: if kwargs_dict.value contains newlines.
    """
    self._additional_note = additional_note
    if kwargs_dict:
      bullets = []
      for key in sorted(kwargs_dict.keys()):
        value = kwargs_dict[key]
        if any(x.isspace() for x in key):
          raise ValueError(
              "Parameter name \"%s\" contains whitespace." % key)
        value = value.lstrip()
        if "\n" in value:
          raise ValueError(
              "Parameter description for \"%s\" contains newlines." % key)
        bullets.append("*  `%s`: %s" % (key, value))
      self._additional_note += ("\n\n##### `kwargs`:\n\n" +
                                "\n".join(bullets))

  def __call__(self, fn):
    @functools.wraps(fn)
    def _fn(*args, **kwargs):
      return fn(*args, **kwargs)
    if _fn.__doc__ is None:
      _fn.__doc__ = self._additional_note
    else:
      _fn.__doc__ += "\n%s" % self._additional_note
    return _fn