aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/distributions/transformed_distribution.py
blob: 1be3819569cc1fca599b8967667cb93253edb8f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A Transformed Distribution class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

# Bijectors must be directly imported because `remove_undocumented` prevents
# individual file imports.
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.distributions import distribution as distribution_lib
from tensorflow.python.ops.distributions import identity_bijector
from tensorflow.python.ops.distributions import util as distribution_util

__all__ = [
    "TransformedDistribution",
]


# The following helper functions attempt to statically perform a TF operation.
# These functions make debugging easier since we can do more validation during
# graph construction.


def _static_value(x):
  """Returns the static value of a `Tensor` or `None`."""
  return tensor_util.constant_value(ops.convert_to_tensor(x))


def _logical_and(*args):
  """Convenience function which attempts to statically `reduce_all`."""
  args_ = [_static_value(x) for x in args]
  if any(x is not None and not bool(x) for x in args_):
    return constant_op.constant(False)
  if all(x is not None and bool(x) for x in args_):
    return constant_op.constant(True)
  if len(args) == 2:
    return math_ops.logical_and(*args)
  return math_ops.reduce_all(args)


def _logical_equal(x, y):
  """Convenience function which attempts to statically compute `x == y`."""
  x_ = _static_value(x)
  y_ = _static_value(y)
  if x_ is None or y_ is None:
    return math_ops.equal(x, y)
  return constant_op.constant(np.array_equal(x_, y_))


def _logical_not(x):
  """Convenience function which attempts to statically apply `logical_not`."""
  x_ = _static_value(x)
  if x_ is None:
    return math_ops.logical_not(x)
  return constant_op.constant(np.logical_not(x_))


def _concat_vectors(*args):
  """Convenience function which concatenates input vectors."""
  args_ = [_static_value(x) for x in args]
  if any(x_ is None for x_ in args_):
    return array_ops.concat(args, 0)
  return constant_op.constant([x_ for vec_ in args_ for x_ in vec_])


def _pick_scalar_condition(pred, cond_true, cond_false):
  """Convenience function which chooses the condition based on the predicate."""
  # Note: This function is only valid if all of pred, cond_true, and cond_false
  # are scalars. This means its semantics are arguably more like tf.cond than
  # tf.select even though we use tf.select to implement it.
  pred_ = _static_value(pred)
  if pred_ is None:
    return array_ops.where(pred, cond_true, cond_false)
  return cond_true if pred_ else cond_false


def _ones_like(x):
  """Convenience function attempts to statically construct `ones_like`."""
  # Should only be used for small vectors.
  if x.get_shape().is_fully_defined():
    return array_ops.ones(x.get_shape().as_list(), dtype=x.dtype)
  return array_ops.ones_like(x)


def _ndims_from_shape(shape):
  """Returns `Tensor`'s `rank` implied by a `Tensor` shape."""
  if shape.get_shape().ndims not in (None, 1):
    raise ValueError("input is not a valid shape: not 1D")
  if not shape.dtype.is_integer:
    raise TypeError("input is not a valid shape: wrong dtype")
  if shape.get_shape().is_fully_defined():
    return constant_op.constant(shape.get_shape().as_list()[0])
  return array_ops.shape(shape)[0]


def _is_scalar_from_shape(shape):
  """Returns `True` `Tensor` if `Tensor` shape implies a scalar."""
  return _logical_equal(_ndims_from_shape(shape), 0)


class TransformedDistribution(distribution_lib.Distribution):
  """A Transformed Distribution.

  A `TransformedDistribution` models `p(y)` given a base distribution `p(x)`,
  and a deterministic, invertible, differentiable transform, `Y = g(X)`. The
  transform is typically an instance of the `Bijector` class and the base
  distribution is typically an instance of the `Distribution` class.

  A `Bijector` is expected to implement the following functions:
  - `forward`,
  - `inverse`,
  - `inverse_log_det_jacobian`.
  The semantics of these functions are outlined in the `Bijector` documentation.

  We now describe how a `TransformedDistribution` alters the input/outputs of a
  `Distribution` associated with a random variable (rv) `X`.

  Write `cdf(Y=y)` for an absolutely continuous cumulative distribution function
  of random variable `Y`; write the probability density function `pdf(Y=y) :=
  d^k / (dy_1,...,dy_k) cdf(Y=y)` for its derivative wrt to `Y` evaluated at
  `y`. Assume that `Y = g(X)` where `g` is a deterministic diffeomorphism,
  i.e., a non-random, continuous, differentiable, and invertible function.
  Write the inverse of `g` as `X = g^{-1}(Y)` and `(J o g)(x)` for the Jacobian
  of `g` evaluated at `x`.

  A `TransformedDistribution` implements the following operations:

    * `sample`
      Mathematically:   `Y = g(X)`
      Programmatically: `bijector.forward(distribution.sample(...))`

    * `log_prob`
      Mathematically:   `(log o pdf)(Y=y) = (log o pdf o g^{-1})(y)
                         + (log o abs o det o J o g^{-1})(y)`
      Programmatically: `(distribution.log_prob(bijector.inverse(y))
                         + bijector.inverse_log_det_jacobian(y))`

    * `log_cdf`
      Mathematically:   `(log o cdf)(Y=y) = (log o cdf o g^{-1})(y)`
      Programmatically: `distribution.log_cdf(bijector.inverse(x))`

    * and similarly for: `cdf`, `prob`, `log_survival_function`,
     `survival_function`.

  A simple example constructing a Log-Normal distribution from a Normal
  distribution:

  ```python
  ds = tf.contrib.distributions
  log_normal = ds.TransformedDistribution(
    distribution=ds.Normal(loc=0., scale=1.),
    bijector=ds.bijectors.Exp(),
    name="LogNormalTransformedDistribution")
  ```

  A `LogNormal` made from callables:

  ```python
  ds = tf.contrib.distributions
  log_normal = ds.TransformedDistribution(
    distribution=ds.Normal(loc=0., scale=1.),
    bijector=ds.bijectors.Inline(
      forward_fn=tf.exp,
      inverse_fn=tf.log,
      inverse_log_det_jacobian_fn=(
        lambda y: -tf.reduce_sum(tf.log(y), axis=-1)),
    name="LogNormalTransformedDistribution")
  ```

  Another example constructing a Normal from a StandardNormal:

  ```python
  ds = tf.contrib.distributions
  normal = ds.TransformedDistribution(
    distribution=ds.Normal(loc=0., scale=1.),
    bijector=ds.bijectors.Affine(
      shift=-1.,
      scale_identity_multiplier=2.,
      event_ndims=0),
    name="NormalTransformedDistribution")
  ```

  A `TransformedDistribution`'s batch- and event-shape are implied by the base
  distribution unless explicitly overridden by `batch_shape` or `event_shape`
  arguments. Specifying an overriding `batch_shape` (`event_shape`) is
  permitted only if the base distribution has scalar batch-shape (event-shape).
  The bijector is applied to the distribution as if the distribution possessed
  the overridden shape(s). The following example demonstrates how to construct a
  multivariate Normal as a `TransformedDistribution`.

  ```python
  ds = tf.contrib.distributions
  # We will create two MVNs with batch_shape = event_shape = 2.
  mean = [[-1., 0],      # batch:0
          [0., 1]]       # batch:1
  chol_cov = [[[1., 0],
               [0, 1]],  # batch:0
              [[1, 0],
               [2, 2]]]  # batch:1
  mvn1 = ds.TransformedDistribution(
      distribution=ds.Normal(loc=0., scale=1.),
      bijector=ds.bijectors.Affine(shift=mean, scale_tril=chol_cov),
      batch_shape=[2],  # Valid because base_distribution.batch_shape == [].
      event_shape=[2])  # Valid because base_distribution.event_shape == [].
  mvn2 = ds.MultivariateNormalTriL(loc=mean, scale_tril=chol_cov)
  # mvn1.log_prob(x) == mvn2.log_prob(x)
  ```

  """

  def __init__(self,
               distribution,
               bijector=None,
               batch_shape=None,
               event_shape=None,
               validate_args=False,
               name=None):
    """Construct a Transformed Distribution.

    Args:
      distribution: The base distribution instance to transform. Typically an
        instance of `Distribution`.
      bijector: The object responsible for calculating the transformation.
        Typically an instance of `Bijector`. `None` means `Identity()`.
      batch_shape: `integer` vector `Tensor` which overrides `distribution`
        `batch_shape`; valid only if `distribution.is_scalar_batch()`.
      event_shape: `integer` vector `Tensor` which overrides `distribution`
        `event_shape`; valid only if `distribution.is_scalar_event()`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      name: Python `str` name prefixed to Ops created by this class. Default:
        `bijector.name + distribution.name`.
    """
    parameters = locals()
    name = name or (("" if bijector is None else bijector.name) +
                    distribution.name)
    with ops.name_scope(name, values=[event_shape, batch_shape]):
      # For convenience we define some handy constants.
      self._zero = constant_op.constant(0, dtype=dtypes.int32, name="zero")
      self._empty = constant_op.constant([], dtype=dtypes.int32, name="empty")

      if bijector is None:
        bijector = identity_bijector.Identity(validate_args=validate_args)

      # We will keep track of a static and dynamic version of
      # self._is_{batch,event}_override. This way we can do more prior to graph
      # execution, including possibly raising Python exceptions.

      self._override_batch_shape = self._maybe_validate_shape_override(
          batch_shape, distribution.is_scalar_batch(), validate_args,
          "batch_shape")
      self._is_batch_override = _logical_not(_logical_equal(
          _ndims_from_shape(self._override_batch_shape), self._zero))
      self._is_maybe_batch_override = bool(
          tensor_util.constant_value(self._override_batch_shape) is None or
          tensor_util.constant_value(self._override_batch_shape).size != 0)

      self._override_event_shape = self._maybe_validate_shape_override(
          event_shape, distribution.is_scalar_event(), validate_args,
          "event_shape")
      self._is_event_override = _logical_not(_logical_equal(
          _ndims_from_shape(self._override_event_shape), self._zero))
      self._is_maybe_event_override = bool(
          tensor_util.constant_value(self._override_event_shape) is None or
          tensor_util.constant_value(self._override_event_shape).size != 0)

      # To convert a scalar distribution into a multivariate distribution we
      # will draw dims from the sample dims, which are otherwise iid. This is
      # easy to do except in the case that the base distribution has batch dims
      # and we're overriding event shape. When that case happens the event dims
      # will incorrectly be to the left of the batch dims. In this case we'll
      # cyclically permute left the new dims.
      self._needs_rotation = _logical_and(
          self._is_event_override,
          _logical_not(self._is_batch_override),
          _logical_not(distribution.is_scalar_batch()))
      override_event_ndims = _ndims_from_shape(self._override_event_shape)
      self._rotate_ndims = _pick_scalar_condition(
          self._needs_rotation, override_event_ndims, 0)
      # We'll be reducing the head dims (if at all), i.e., this will be []
      # if we don't need to reduce.
      self._reduce_event_indices = math_ops.range(
          self._rotate_ndims - override_event_ndims, self._rotate_ndims)

    self._distribution = distribution
    self._bijector = bijector
    super(TransformedDistribution, self).__init__(
        dtype=self._distribution.dtype,
        reparameterization_type=self._distribution.reparameterization_type,
        validate_args=validate_args,
        allow_nan_stats=self._distribution.allow_nan_stats,
        parameters=parameters,
        # We let TransformedDistribution access _graph_parents since this class
        # is more like a baseclass than derived.
        graph_parents=(distribution._graph_parents +  # pylint: disable=protected-access
                       bijector.graph_parents),
        name=name)

  @property
  def distribution(self):
    """Base distribution, p(x)."""
    return self._distribution

  @property
  def bijector(self):
    """Function transforming x => y."""
    return self._bijector

  def _event_shape_tensor(self):
    return self.bijector.forward_event_shape_tensor(
        distribution_util.pick_vector(
            self._is_event_override,
            self._override_event_shape,
            self.distribution.event_shape_tensor()))

  def _event_shape(self):
    # If there's a chance that the event_shape has been overridden, we return
    # what we statically know about the `event_shape_override`. This works
    # because: `_is_maybe_event_override` means `static_override` is `None` or a
    # non-empty list, i.e., we don't statically know the `event_shape` or we do.
    #
    # Since the `bijector` may change the `event_shape`, we then forward what we
    # know to the bijector. This allows the `bijector` to have final say in the
    # `event_shape`.
    static_override = tensor_util.constant_value(self._override_event_shape)
    return self.bijector.forward_event_shape(
        tensor_shape.TensorShape(static_override)
        if self._is_maybe_event_override
        else self.distribution.event_shape)

  def _batch_shape_tensor(self):
    return distribution_util.pick_vector(
        self._is_batch_override,
        self._override_batch_shape,
        self.distribution.batch_shape_tensor())

  def _batch_shape(self):
    # If there's a chance that the batch_shape has been overridden, we return
    # what we statically know about the `batch_shape_override`. This works
    # because: `_is_maybe_batch_override` means `static_override` is `None` or a
    # non-empty list, i.e., we don't statically know the `batch_shape` or we do.
    #
    # Notice that this implementation parallels the `_event_shape` except that
    # the `bijector` doesn't get to alter the `batch_shape`. Recall that
    # `batch_shape` is a property of a distribution while `event_shape` is
    # shared between both the `distribution` instance and the `bijector`.
    static_override = tensor_util.constant_value(self._override_batch_shape)
    return (tensor_shape.TensorShape(static_override)
            if self._is_maybe_batch_override
            else self.distribution.batch_shape)

  def _sample_n(self, n, seed=None):
    sample_shape = _concat_vectors(
        distribution_util.pick_vector(self._needs_rotation, self._empty, [n]),
        self._override_batch_shape,
        self._override_event_shape,
        distribution_util.pick_vector(self._needs_rotation, [n], self._empty))
    x = self.distribution.sample(sample_shape=sample_shape, seed=seed)
    x = self._maybe_rotate_dims(x)
    return self.bijector.forward(x)

  def _log_prob(self, y):
    x = self.bijector.inverse(y)
    ildj = self.bijector.inverse_log_det_jacobian(y)
    x = self._maybe_rotate_dims(x, rotate_right=True)
    log_prob = self.distribution.log_prob(x)
    if self._is_maybe_event_override:
      log_prob = math_ops.reduce_sum(log_prob, self._reduce_event_indices)
    log_prob = ildj + log_prob
    if self._is_maybe_event_override:
      log_prob.set_shape(array_ops.broadcast_static_shape(
          y.get_shape().with_rank_at_least(1)[:-1], self.batch_shape))
    return log_prob

  def _prob(self, y):
    x = self.bijector.inverse(y)
    ildj = self.bijector.inverse_log_det_jacobian(y)
    x = self._maybe_rotate_dims(x, rotate_right=True)
    prob = self.distribution.prob(x)
    if self._is_maybe_event_override:
      prob = math_ops.reduce_prod(prob, self._reduce_event_indices)
    prob *= math_ops.exp(ildj)
    if self._is_maybe_event_override:
      prob.set_shape(array_ops.broadcast_static_shape(
          y.get_shape().with_rank_at_least(1)[:-1], self.batch_shape))
    return prob

  def _log_cdf(self, y):
    if self._is_maybe_event_override:
      raise NotImplementedError("log_cdf is not implemented when overriding "
                                "event_shape")
    x = self.bijector.inverse(y)
    return self.distribution.log_cdf(x)

  def _cdf(self, y):
    if self._is_maybe_event_override:
      raise NotImplementedError("cdf is not implemented when overriding "
                                "event_shape")
    x = self.bijector.inverse(y)
    return self.distribution.cdf(x)

  def _log_survival_function(self, y):
    if self._is_maybe_event_override:
      raise NotImplementedError("log_survival_function is not implemented when "
                                "overriding event_shape")
    x = self.bijector.inverse(y)
    return self.distribution.log_survival_function(x)

  def _survival_function(self, y):
    if self._is_maybe_event_override:
      raise NotImplementedError("survival_function is not implemented when "
                                "overriding event_shape")
    x = self.bijector.inverse(y)
    return self.distribution.survival_function(x)

  def _entropy(self):
    if not self.bijector.is_constant_jacobian:
      raise NotImplementedError("entropy is not implemented")
    # Suppose Y = g(X) where g is a diffeomorphism and X is a continuous rv. It
    # can be shown that:
    #   H[Y] = H[X] + E_X[(log o abs o det o J o g)(X)].
    # If is_constant_jacobian then:
    #   E_X[(log o abs o det o J o g)(X)] = (log o abs o det o J o g)(c)
    # where c can by anything.
    entropy = self.distribution.entropy()
    if self._is_maybe_event_override:
      # H[X] = sum_i H[X_i] if X_i are mutually independent.
      # This means that a reduce_sum is a simple rescaling.
      entropy *= math_ops.cast(math_ops.reduce_prod(self._override_event_shape),
                               dtype=entropy.dtype.base_dtype)
    if self._is_maybe_batch_override:
      new_shape = array_ops.concat([
          _ones_like(self._override_batch_shape),
          self.distribution.batch_shape_tensor()
      ], 0)
      entropy = array_ops.reshape(entropy, new_shape)
      multiples = array_ops.concat([
          self._override_batch_shape,
          _ones_like(self.distribution.batch_shape_tensor())
      ], 0)
      entropy = array_ops.tile(entropy, multiples)
    dummy = array_ops.zeros([], self.dtype)
    entropy -= self.bijector.inverse_log_det_jacobian(dummy)
    entropy.set_shape(self.batch_shape)
    return entropy

  def _maybe_validate_shape_override(self, override_shape, base_is_scalar,
                                     validate_args, name):
    """Helper to __init__ which ensures override batch/event_shape are valid."""
    if override_shape is None:
      override_shape = []

    override_shape = ops.convert_to_tensor(override_shape, dtype=dtypes.int32,
                                           name=name)

    if not override_shape.dtype.is_integer:
      raise TypeError("shape override must be an integer")

    override_is_scalar = _is_scalar_from_shape(override_shape)
    if tensor_util.constant_value(override_is_scalar):
      return self._empty

    dynamic_assertions = []

    if override_shape.get_shape().ndims is not None:
      if override_shape.get_shape().ndims != 1:
        raise ValueError("shape override must be a vector")
    elif validate_args:
      dynamic_assertions += [check_ops.assert_rank(
          override_shape, 1,
          message="shape override must be a vector")]

    if tensor_util.constant_value(override_shape) is not None:
      if any(s <= 0 for s in tensor_util.constant_value(override_shape)):
        raise ValueError("shape override must have positive elements")
    elif validate_args:
      dynamic_assertions += [check_ops.assert_positive(
          override_shape,
          message="shape override must have positive elements")]

    is_both_nonscalar = _logical_and(_logical_not(base_is_scalar),
                                     _logical_not(override_is_scalar))
    if tensor_util.constant_value(is_both_nonscalar) is not None:
      if tensor_util.constant_value(is_both_nonscalar):
        raise ValueError("base distribution not scalar")
    elif validate_args:
      dynamic_assertions += [check_ops.assert_equal(
          is_both_nonscalar, False,
          message="base distribution not scalar")]

    if not dynamic_assertions:
      return override_shape
    return control_flow_ops.with_dependencies(
        dynamic_assertions, override_shape)

  def _maybe_rotate_dims(self, x, rotate_right=False):
    """Helper which rolls left event_dims left or right event_dims right."""
    needs_rotation_const = tensor_util.constant_value(self._needs_rotation)
    if needs_rotation_const is not None and not needs_rotation_const:
      return x
    ndims = array_ops.rank(x)
    n = (ndims - self._rotate_ndims) if rotate_right else self._rotate_ndims
    return array_ops.transpose(
        x, _concat_vectors(math_ops.range(n, ndims), math_ops.range(0, n)))