aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/distributions/special_math.py
blob: f96eafed71255a78abd94a3d41bac8b83bf14b25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Special Math Ops."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops

__all__ = [
    "ndtr",
    "ndtri",
    "log_ndtr",
    "log_cdf_laplace",
]


# log_ndtr uses different functions over the ranges
# (-infty, lower](lower, upper](upper, infty)
# Lower bound values were chosen by examining where the support of ndtr
# appears to be zero, relative to scipy's (which is always 64bit). They were
# then made more conservative just to be safe. (Conservative means use the
# expansion more than we probably need to.) See `NdtrTest` in
# special_math_test.py.
LOGNDTR_FLOAT64_LOWER = -20
LOGNDTR_FLOAT32_LOWER = -10

# Upper bound values were chosen by examining for which values of 'x'
# Log[cdf(x)] is 0, after which point we need to use the approximation
# Log[cdf(x)] = Log[1 - cdf(-x)] approx -cdf(-x). We chose a value slightly
# conservative, meaning we use the approximation earlier than needed.
LOGNDTR_FLOAT64_UPPER = 8
LOGNDTR_FLOAT32_UPPER = 5


def ndtr(x, name="ndtr"):
  """Normal distribution function.

  Returns the area under the Gaussian probability density function, integrated
  from minus infinity to x:

  ```
                    1       / x
     ndtr(x)  = ----------  |    exp(-0.5 t**2) dt
                sqrt(2 pi)  /-inf

              = 0.5 (1 + erf(x / sqrt(2)))
              = 0.5 erfc(x / sqrt(2))
  ```

  Args:
    x: `Tensor` of type `float32`, `float64`.
    name: Python string. A name for the operation (default="ndtr").

  Returns:
    ndtr: `Tensor` with `dtype=x.dtype`.

  Raises:
    TypeError: if `x` is not floating-type.
  """

  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")
    if x.dtype.as_numpy_dtype not in [np.float32, np.float64]:
      raise TypeError(
          "x.dtype=%s is not handled, see docstring for supported types."
          % x.dtype)
    return _ndtr(x)


def _ndtr(x):
  """Implements ndtr core logic."""
  half_sqrt_2 = constant_op.constant(
      0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2")
  w = x * half_sqrt_2
  z = math_ops.abs(w)
  y = array_ops.where(math_ops.less(z, half_sqrt_2),
                      1. + math_ops.erf(w),
                      array_ops.where(math_ops.greater(w, 0.),
                                      2. - math_ops.erfc(z),
                                      math_ops.erfc(z)))
  return 0.5 * y


def ndtri(p, name="ndtri"):
  """The inverse of the CDF of the Normal distribution function.

  Returns x such that the area under the pdf from minus infinity to x is equal
  to p.

  A piece-wise rational approximation is done for the function.
  This is a port of the implementation in netlib.

  Args:
    p: `Tensor` of type `float32`, `float64`.
    name: Python string. A name for the operation (default="ndtri").

  Returns:
    x: `Tensor` with `dtype=p.dtype`.

  Raises:
    TypeError: if `p` is not floating-type.
  """

  with ops.name_scope(name, values=[p]):
    p = ops.convert_to_tensor(p, name="p")
    if p.dtype.as_numpy_dtype not in [np.float32, np.float64]:
      raise TypeError(
          "p.dtype=%s is not handled, see docstring for supported types."
          % p.dtype)
    return _ndtri(p)


def _ndtri(p):
  """Implements ndtri core logic."""

  # Constants used in piece-wise rational approximations. Taken from the cephes
  # library:
  # https://github.com/scipy/scipy/blob/master/scipy/special/cephes/ndtri.c
  p0 = list(reversed([-5.99633501014107895267E1,
                      9.80010754185999661536E1,
                      -5.66762857469070293439E1,
                      1.39312609387279679503E1,
                      -1.23916583867381258016E0]))
  q0 = list(reversed([1.0,
                      1.95448858338141759834E0,
                      4.67627912898881538453E0,
                      8.63602421390890590575E1,
                      -2.25462687854119370527E2,
                      2.00260212380060660359E2,
                      -8.20372256168333339912E1,
                      1.59056225126211695515E1,
                      -1.18331621121330003142E0]))
  p1 = list(reversed([4.05544892305962419923E0,
                      3.15251094599893866154E1,
                      5.71628192246421288162E1,
                      4.40805073893200834700E1,
                      1.46849561928858024014E1,
                      2.18663306850790267539E0,
                      -1.40256079171354495875E-1,
                      -3.50424626827848203418E-2,
                      -8.57456785154685413611E-4]))
  q1 = list(reversed([1.0,
                      1.57799883256466749731E1,
                      4.53907635128879210584E1,
                      4.13172038254672030440E1,
                      1.50425385692907503408E1,
                      2.50464946208309415979E0,
                      -1.42182922854787788574E-1,
                      -3.80806407691578277194E-2,
                      -9.33259480895457427372E-4]))
  p2 = list(reversed([3.23774891776946035970E0,
                      6.91522889068984211695E0,
                      3.93881025292474443415E0,
                      1.33303460815807542389E0,
                      2.01485389549179081538E-1,
                      1.23716634817820021358E-2,
                      3.01581553508235416007E-4,
                      2.65806974686737550832E-6,
                      6.23974539184983293730E-9]))
  q2 = list(reversed([1.0,
                      6.02427039364742014255E0,
                      3.67983563856160859403E0,
                      1.37702099489081330271E0,
                      2.16236993594496635890E-1,
                      1.34204006088543189037E-2,
                      3.28014464682127739104E-4,
                      2.89247864745380683936E-6,
                      6.79019408009981274425E-9]))

  def _create_polynomial(var, coeffs):
    """Compute n_th order polynomial via Horner's method."""
    if not coeffs:
      return 0.
    return coeffs[0] + _create_polynomial(var, coeffs[1:]) * var

  maybe_complement_p = array_ops.where(p > 1. - np.exp(-2.), 1. - p, p)
  # Write in an arbitrary value in place of 0 for p since 0 will cause NaNs
  # later on. The result from the computation when p == 0 is not used so any
  # number that doesn't result in NaNs is fine.
  sanitized_mcp = array_ops.where(
      maybe_complement_p <= 0.,
      constant_op.constant(0.5, dtype=p.dtype, shape=p.shape),
      maybe_complement_p)

  # Compute x for p > exp(-2): x/sqrt(2pi) = w + w**3 P0(w**2)/Q0(w**2).
  w = sanitized_mcp - 0.5
  ww = w ** 2
  x_for_big_p = w + w * ww * (_create_polynomial(ww, p0)
                              / _create_polynomial(ww, q0))
  x_for_big_p *= -np.sqrt(2. * np.pi)

  # Compute x for p <= exp(-2): x = z - log(z)/z - (1/z) P(1/z) / Q(1/z),
  # where z = sqrt(-2. * log(p)), and P/Q are chosen between two different
  # arrays based on wether p < exp(-32).
  z = math_ops.sqrt(-2. * math_ops.log(sanitized_mcp))
  first_term = z - math_ops.log(z) / z
  second_term_small_p = (_create_polynomial(1. / z, p2)
                         / _create_polynomial(1. / z, q2)) / z
  second_term_otherwise = (_create_polynomial(1. / z, p1)
                           / _create_polynomial(1. / z, q1)) / z
  x_for_small_p = first_term - second_term_small_p
  x_otherwise = first_term - second_term_otherwise

  x = array_ops.where(sanitized_mcp > np.exp(-2.),
                      x_for_big_p,
                      array_ops.where(z >= 8.0, x_for_small_p, x_otherwise))

  x = array_ops.where(p > 1. - np.exp(-2.), x, -x)
  infinity = constant_op.constant(np.inf, dtype=x.dtype, shape=x.shape)
  x_nan_replaced = array_ops.where(
      p <= 0.0, -infinity, array_ops.where(p >= 1.0, infinity, x))
  return x_nan_replaced


def log_ndtr(x, series_order=3, name="log_ndtr"):
  """Log Normal distribution function.

  For details of the Normal distribution function see `ndtr`.

  This function calculates `(log o ndtr)(x)` by either calling `log(ndtr(x))` or
  using an asymptotic series. Specifically:
  - For `x > upper_segment`, use the approximation `-ndtr(-x)` based on
    `log(1-x) ~= -x, x << 1`.
  - For `lower_segment < x <= upper_segment`, use the existing `ndtr` technique
    and take a log.
  - For `x <= lower_segment`, we use the series approximation of erf to compute
    the log CDF directly.

  The `lower_segment` is set based on the precision of the input:

  ```
  lower_segment = { -20,  x.dtype=float64
                  { -10,  x.dtype=float32
  upper_segment = {   8,  x.dtype=float64
                  {   5,  x.dtype=float32
  ```

  When `x < lower_segment`, the `ndtr` asymptotic series approximation is:

  ```
     ndtr(x) = scale * (1 + sum) + R_N
     scale   = exp(-0.5 x**2) / (-x sqrt(2 pi))
     sum     = Sum{(-1)^n (2n-1)!! / (x**2)^n, n=1:N}
     R_N     = O(exp(-0.5 x**2) (2N+1)!! / |x|^{2N+3})
  ```

  where `(2n-1)!! = (2n-1) (2n-3) (2n-5) ...  (3) (1)` is a
  [double-factorial](https://en.wikipedia.org/wiki/Double_factorial).


  Args:
    x: `Tensor` of type `float32`, `float64`.
    series_order: Positive Python `integer`. Maximum depth to
      evaluate the asymptotic expansion. This is the `N` above.
    name: Python string. A name for the operation (default="log_ndtr").

  Returns:
    log_ndtr: `Tensor` with `dtype=x.dtype`.

  Raises:
    TypeError: if `x.dtype` is not handled.
    TypeError: if `series_order` is a not Python `integer.`
    ValueError:  if `series_order` is not in `[0, 30]`.
  """
  if not isinstance(series_order, int):
    raise TypeError("series_order must be a Python integer.")
  if series_order < 0:
    raise ValueError("series_order must be non-negative.")
  if series_order > 30:
    raise ValueError("series_order must be <= 30.")

  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")

    if x.dtype.as_numpy_dtype == np.float64:
      lower_segment = LOGNDTR_FLOAT64_LOWER
      upper_segment = LOGNDTR_FLOAT64_UPPER
    elif x.dtype.as_numpy_dtype == np.float32:
      lower_segment = LOGNDTR_FLOAT32_LOWER
      upper_segment = LOGNDTR_FLOAT32_UPPER
    else:
      raise TypeError("x.dtype=%s is not supported." % x.dtype)

    # The basic idea here was ported from py/scipy/special/cephes/ndtr.c.
    # We copy the main idea, with a few changes
    # * For x >> 1, and X ~ Normal(0, 1),
    #     Log[P[X < x]] = Log[1 - P[X < -x]] approx -P[X < -x],
    #     which extends the range of validity of this function.
    # * We use one fixed series_order for all of 'x', rather than adaptive.
    # * Our docstring properly reflects that this is an asymptotic series, not a
    #   Taylor series. We also provided a correct bound on the remainder.
    # * We need to use the max/min in the _log_ndtr_lower arg to avoid nan when
    #   x=0. This happens even though the branch is unchosen because when x=0
    #   the gradient of a select involves the calculation 1*dy+0*(-inf)=nan
    #   regardless of whether dy is finite. Note that the minimum is a NOP if
    #   the branch is chosen.
    return array_ops.where(
        math_ops.greater(x, upper_segment),
        -_ndtr(-x),  # log(1-x) ~= -x, x << 1
        array_ops.where(math_ops.greater(x, lower_segment),
                        math_ops.log(_ndtr(math_ops.maximum(x, lower_segment))),
                        _log_ndtr_lower(math_ops.minimum(x, lower_segment),
                                        series_order)))


def _log_ndtr_lower(x, series_order):
  """Asymptotic expansion version of `Log[cdf(x)]`, apppropriate for `x<<-1`."""
  x_2 = math_ops.square(x)
  # Log of the term multiplying (1 + sum)
  log_scale = -0.5 * x_2 - math_ops.log(-x) - 0.5 * math.log(2. * math.pi)
  return log_scale + math_ops.log(_log_ndtr_asymptotic_series(x, series_order))


def _log_ndtr_asymptotic_series(x, series_order):
  """Calculates the asymptotic series used in log_ndtr."""
  if series_order <= 0:
    return 1.
  x_2 = math_ops.square(x)
  even_sum = 0.
  odd_sum = 0.
  x_2n = x_2  # Start with x^{2*1} = x^{2*n} with n = 1.
  for n in range(1, series_order + 1):
    if n % 2:
      odd_sum += _double_factorial(2 * n - 1) / x_2n
    else:
      even_sum += _double_factorial(2 * n - 1) / x_2n
    x_2n *= x_2
  return 1. + even_sum - odd_sum


def _double_factorial(n):
  """The double factorial function for small Python integer `n`."""
  return np.prod(np.arange(n, 1, -2))


def log_cdf_laplace(x, name="log_cdf_laplace"):
  """Log Laplace distribution function.

  This function calculates `Log[L(x)]`, where `L(x)` is the cumulative
  distribution function of the Laplace distribution, i.e.

  ```L(x) := 0.5 * int_{-infty}^x e^{-|t|} dt```

  For numerical accuracy, `L(x)` is computed in different ways depending on `x`,

  ```
  x <= 0:
    Log[L(x)] = Log[0.5] + x, which is exact

  0 < x:
    Log[L(x)] = Log[1 - 0.5 * e^{-x}], which is exact
  ```

  Args:
    x: `Tensor` of type `float32`, `float64`.
    name: Python string. A name for the operation (default="log_ndtr").

  Returns:
    `Tensor` with `dtype=x.dtype`.

  Raises:
    TypeError: if `x.dtype` is not handled.
  """

  with ops.name_scope(name, values=[x]):
    x = ops.convert_to_tensor(x, name="x")

    # For x < 0, L(x) = 0.5 * exp{x} exactly, so Log[L(x)] = log(0.5) + x.
    lower_solution = -np.log(2.) + x

    # safe_exp_neg_x = exp{-x} for x > 0, but is
    # bounded above by 1, which avoids
    #   log[1 - 1] = -inf for x = log(1/2), AND
    #   exp{-x} --> inf, for x << -1
    safe_exp_neg_x = math_ops.exp(-math_ops.abs(x))

    # log1p(z) = log(1 + z) approx z for |z| << 1. This approxmation is used
    # internally by log1p, rather than being done explicitly here.
    upper_solution = math_ops.log1p(-0.5 * safe_exp_neg_x)

    return array_ops.where(x < 0., lower_solution, upper_solution)