aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/distributions/normal.py
blob: 4c531b03788edaadad404504302e49ef96689a26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Normal (Gaussian) distribution class."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import kullback_leibler
from tensorflow.python.ops.distributions import special_math


__all__ = [
    "Normal",
    "NormalWithSoftplusScale",
]


class Normal(distribution.Distribution):
  """The Normal distribution with location `loc` and `scale` parameters.

  #### Mathematical details

  The probability density function (pdf) is,

  ```none
  pdf(x; mu, sigma) = exp(-0.5 (x - mu)**2 / sigma**2) / Z
  Z = (2 pi sigma**2)**0.5
  ```

  where `loc = mu` is the mean, `scale = sigma` is the std. deviation, and, `Z`
  is the normalization constant.

  The Normal distribution is a member of the [location-scale family](
  https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
  constructed as,

  ```none
  X ~ Normal(loc=0, scale=1)
  Y = loc + scale * X
  ```

  #### Examples

  Examples of initialization of one or a batch of distributions.

  ```python
  # Define a single scalar Normal distribution.
  dist = tf.contrib.distributions.Normal(loc=0., scale=3.)

  # Evaluate the cdf at 1, returning a scalar.
  dist.cdf(1.)

  # Define a batch of two scalar valued Normals.
  # The first has mean 1 and standard deviation 11, the second 2 and 22.
  dist = tf.contrib.distributions.Normal(loc=[1, 2.], scale=[11, 22.])

  # Evaluate the pdf of the first distribution on 0, and the second on 1.5,
  # returning a length two tensor.
  dist.prob([0, 1.5])

  # Get 3 samples, returning a 3 x 2 tensor.
  dist.sample([3])
  ```

  Arguments are broadcast when possible.

  ```python
  # Define a batch of two scalar valued Normals.
  # Both have mean 1, but different standard deviations.
  dist = tf.contrib.distributions.Normal(loc=1., scale=[11, 22.])

  # Evaluate the pdf of both distributions on the same point, 3.0,
  # returning a length 2 tensor.
  dist.prob(3.0)
  ```

  """

  def __init__(self,
               loc,
               scale,
               validate_args=False,
               allow_nan_stats=True,
               name="Normal"):
    """Construct Normal distributions with mean and stddev `loc` and `scale`.

    The parameters `loc` and `scale` must be shaped in a way that supports
    broadcasting (e.g. `loc + scale` is a valid operation).

    Args:
      loc: Floating point tensor; the means of the distribution(s).
      scale: Floating point tensor; the stddevs of the distribution(s).
        Must contain only positive values.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      TypeError: if `loc` and `scale` have different `dtype`.
    """
    parameters = locals()
    with ops.name_scope(name, values=[loc, scale]):
      with ops.control_dependencies([check_ops.assert_positive(scale)] if
                                    validate_args else []):
        self._loc = array_ops.identity(loc, name="loc")
        self._scale = array_ops.identity(scale, name="scale")
        check_ops.assert_same_float_dtype([self._loc, self._scale])
    super(Normal, self).__init__(
        dtype=self._scale.dtype,
        reparameterization_type=distribution.FULLY_REPARAMETERIZED,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        parameters=parameters,
        graph_parents=[self._loc, self._scale],
        name=name)

  @staticmethod
  def _param_shapes(sample_shape):
    return dict(
        zip(("loc", "scale"), ([ops.convert_to_tensor(
            sample_shape, dtype=dtypes.int32)] * 2)))

  @property
  def loc(self):
    """Distribution parameter for the mean."""
    return self._loc

  @property
  def scale(self):
    """Distribution parameter for standard deviation."""
    return self._scale

  def _batch_shape_tensor(self):
    return array_ops.broadcast_dynamic_shape(
        array_ops.shape(self.loc),
        array_ops.shape(self.scale))

  def _batch_shape(self):
    return array_ops.broadcast_static_shape(
        self.loc.get_shape(),
        self.scale.get_shape())

  def _event_shape_tensor(self):
    return constant_op.constant([], dtype=dtypes.int32)

  def _event_shape(self):
    return tensor_shape.scalar()

  def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    sampled = random_ops.random_normal(
        shape=shape, mean=0., stddev=1., dtype=self.loc.dtype, seed=seed)
    return sampled * self.scale + self.loc

  def _log_prob(self, x):
    return self._log_unnormalized_prob(x) - self._log_normalization()

  def _prob(self, x):
    return math_ops.exp(self._log_prob(x))

  def _log_cdf(self, x):
    return special_math.log_ndtr(self._z(x))

  def _cdf(self, x):
    return special_math.ndtr(self._z(x))

  def _log_survival_function(self, x):
    return special_math.log_ndtr(-self._z(x))

  def _survival_function(self, x):
    return special_math.ndtr(-self._z(x))

  def _log_unnormalized_prob(self, x):
    return -0.5 * math_ops.square(self._z(x))

  def _log_normalization(self):
    return 0.5 * math.log(2. * math.pi) + math_ops.log(self.scale)

  def _entropy(self):
    # Use broadcasting rules to calculate the full broadcast scale.
    scale = self.scale * array_ops.ones_like(self.loc)
    return 0.5 * math.log(2. * math.pi * math.e) + math_ops.log(scale)

  def _mean(self):
    return self.loc * array_ops.ones_like(self.scale)

  def _quantile(self, p):
    return self._inv_z(special_math.ndtri(p))

  def _stddev(self):
    return self.scale * array_ops.ones_like(self.loc)

  def _mode(self):
    return self._mean()

  def _z(self, x):
    """Standardize input `x` to a unit normal."""
    with ops.name_scope("standardize", values=[x]):
      return (x - self.loc) / self.scale

  def _inv_z(self, z):
    """Reconstruct input `x` from a its normalized version."""
    with ops.name_scope("reconstruct", values=[z]):
      return z * self.scale + self.loc


class NormalWithSoftplusScale(Normal):
  """Normal with softplus applied to `scale`."""

  def __init__(self,
               loc,
               scale,
               validate_args=False,
               allow_nan_stats=True,
               name="NormalWithSoftplusScale"):
    parameters = locals()
    with ops.name_scope(name, values=[scale]):
      super(NormalWithSoftplusScale, self).__init__(
          loc=loc,
          scale=nn.softplus(scale, name="softplus_scale"),
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          name=name)
    self._parameters = parameters


@kullback_leibler.RegisterKL(Normal, Normal)
def _kl_normal_normal(n_a, n_b, name=None):
  """Calculate the batched KL divergence KL(n_a || n_b) with n_a and n_b Normal.

  Args:
    n_a: instance of a Normal distribution object.
    n_b: instance of a Normal distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_normal_normal".

  Returns:
    Batchwise KL(n_a || n_b)
  """
  with ops.name_scope(name, "kl_normal_normal", [n_a.loc, n_b.loc]):
    one = constant_op.constant(1, dtype=n_a.dtype)
    two = constant_op.constant(2, dtype=n_a.dtype)
    half = constant_op.constant(0.5, dtype=n_a.dtype)
    s_a_squared = math_ops.square(n_a.scale)
    s_b_squared = math_ops.square(n_b.scale)
    ratio = s_a_squared / s_b_squared
    return (math_ops.square(n_a.loc - n_b.loc) / (two * s_b_squared) +
            half * (ratio - one - math_ops.log(ratio)))