aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/distributions/multinomial.py
blob: 00b5697c8325256538ed01142dd2bab416e98e00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Multinomial distribution class."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import util as distribution_util


__all__ = [
    "Multinomial",
]


_multinomial_sample_note = """For each batch of counts, `value = [n_0, ...
,n_{k-1}]`, `P[value]` is the probability that after sampling `self.total_count`
draws from this Multinomial distribution, the number of draws falling in class
`j` is `n_j`. Since this definition is [exchangeable](
https://en.wikipedia.org/wiki/Exchangeable_random_variables); different
sequences have the same counts so the probability includes a combinatorial
coefficient.

Note: `value` must be a non-negative tensor with dtype `self.dtype`, have no
fractional components, and such that
`tf.reduce_sum(value, -1) = self.total_count`. Its shape must be broadcastable
with `self.probs` and `self.total_count`."""


class Multinomial(distribution.Distribution):
  """Multinomial distribution.

  This Multinomial distribution is parameterized by `probs`, a (batch of)
  length-`K` `prob` (probability) vectors (`K > 1`) such that
  `tf.reduce_sum(probs, -1) = 1`, and a `total_count` number of trials, i.e.,
  the number of trials per draw from the Multinomial. It is defined over a
  (batch of) length-`K` vector `counts` such that
  `tf.reduce_sum(counts, -1) = total_count`. The Multinomial is identically the
  Binomial distribution when `K = 2`.

  #### Mathematical Details

  The Multinomial is a distribution over `K`-class counts, i.e., a length-`K`
  vector of non-negative integer `counts = n = [n_0, ..., n_{K-1}]`.

  The probability mass function (pmf) is,

  ```none
  pmf(n; pi, N) = prod_j (pi_j)**n_j / Z
  Z = (prod_j n_j!) / N!
  ```

  where:
  * `probs = pi = [pi_0, ..., pi_{K-1}]`, `pi_j > 0`, `sum_j pi_j = 1`,
  * `total_count = N`, `N` a positive integer,
  * `Z` is the normalization constant, and,
  * `N!` denotes `N` factorial.

  Distribution parameters are automatically broadcast in all functions; see
  examples for details.

  #### Pitfalls

  The number of classes, `K`, must not exceed:
  - the largest integer representable by `self.dtype`, i.e.,
    `2**(mantissa_bits+1)` (IEE754),
  - the maximum `Tensor` index, i.e., `2**31-1`.

  In other words,

  ```python
  K <= min(2**31-1, {
    tf.float16: 2**11,
    tf.float32: 2**24,
    tf.float64: 2**53 }[param.dtype])
  ```

  Note: This condition is validated only when `self.validate_args = True`.

  #### Examples

  Create a 3-class distribution, with the 3rd class is most likely to be drawn,
  using logits.

  ```python
  logits = [-50., -43, 0]
  dist = Multinomial(total_count=4., logits=logits)
  ```

  Create a 3-class distribution, with the 3rd class is most likely to be drawn.

  ```python
  p = [.2, .3, .5]
  dist = Multinomial(total_count=4., probs=p)
  ```

  The distribution functions can be evaluated on counts.

  ```python
  # counts same shape as p.
  counts = [1., 0, 3]
  dist.prob(counts)  # Shape []

  # p will be broadcast to [[.2, .3, .5], [.2, .3, .5]] to match counts.
  counts = [[1., 2, 1], [2, 2, 0]]
  dist.prob(counts)  # Shape [2]

  # p will be broadcast to shape [5, 7, 3] to match counts.
  counts = [[...]]  # Shape [5, 7, 3]
  dist.prob(counts)  # Shape [5, 7]
  ```

  Create a 2-batch of 3-class distributions.

  ```python
  p = [[.1, .2, .7], [.3, .3, .4]]  # Shape [2, 3]
  dist = Multinomial(total_count=[4., 5], probs=p)

  counts = [[2., 1, 1], [3, 1, 1]]
  dist.prob(counts)  # Shape [2]
  ```
  """

  def __init__(self,
               total_count,
               logits=None,
               probs=None,
               validate_args=False,
               allow_nan_stats=True,
               name="Multinomial"):
    """Initialize a batch of Multinomial distributions.

    Args:
      total_count: Non-negative floating point tensor with shape broadcastable
        to `[N1,..., Nm]` with `m >= 0`. Defines this as a batch of
        `N1 x ... x Nm` different Multinomial distributions. Its components
        should be equal to integer values.
      logits: Floating point tensor representing unnormalized log-probabilities
        of a positive event with shape broadcastable to
        `[N1,..., Nm, K]` `m >= 0`, and the same dtype as `total_count`. Defines
        this as a batch of `N1 x ... x Nm` different `K` class Multinomial
        distributions. Only one of `logits` or `probs` should be passed in.
      probs: Positive floating point tensor with shape broadcastable to
        `[N1,..., Nm, K]` `m >= 0` and same dtype as `total_count`. Defines
        this as a batch of `N1 x ... x Nm` different `K` class Multinomial
        distributions. `probs`'s components in the last portion of its shape
        should sum to `1`. Only one of `logits` or `probs` should be passed in.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()
    with ops.name_scope(name, values=[total_count, logits, probs]):
      self._total_count = ops.convert_to_tensor(total_count, name="total_count")
      if validate_args:
        self._total_count = (
            distribution_util.embed_check_nonnegative_integer_form(
                self._total_count))
      self._logits, self._probs = distribution_util.get_logits_and_probs(
          logits=logits,
          probs=probs,
          multidimensional=True,
          validate_args=validate_args,
          name=name)
      self._mean_val = self._total_count[..., array_ops.newaxis] * self._probs
    super(Multinomial, self).__init__(
        dtype=self._probs.dtype,
        reparameterization_type=distribution.NOT_REPARAMETERIZED,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        parameters=parameters,
        graph_parents=[self._total_count,
                       self._logits,
                       self._probs],
        name=name)

  @property
  def total_count(self):
    """Number of trials used to construct a sample."""
    return self._total_count

  @property
  def logits(self):
    """Vector of coordinatewise logits."""
    return self._logits

  @property
  def probs(self):
    """Probability of drawing a `1` in that coordinate."""
    return self._probs

  def _batch_shape_tensor(self):
    return array_ops.shape(self._mean_val)[:-1]

  def _batch_shape(self):
    return self._mean_val.get_shape().with_rank_at_least(1)[:-1]

  def _event_shape_tensor(self):
    return array_ops.shape(self._mean_val)[-1:]

  def _event_shape(self):
    return self._mean_val.get_shape().with_rank_at_least(1)[-1:]

  def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    if self.total_count.get_shape().ndims is not None:
      if self.total_count.get_shape().ndims != 0:
        raise NotImplementedError(
            "Sample only supported for scalar number of draws.")
    elif self.validate_args:
      is_scalar = check_ops.assert_rank(
          n_draws, 0,
          message="Sample only supported for scalar number of draws.")
      n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
    k = self.event_shape_tensor()[0]
    # Flatten batch dims so logits has shape [B, k],
    # where B = reduce_prod(self.batch_shape_tensor()).
    x = random_ops.multinomial(
        logits=array_ops.reshape(self.logits, [-1, k]),
        num_samples=n * n_draws,
        seed=seed)
    x = array_ops.reshape(x, shape=[-1, n, n_draws])
    x = math_ops.reduce_sum(array_ops.one_hot(x, depth=k),
                            axis=-2)  # shape: [B, n, k]
    x = array_ops.transpose(x, perm=[1, 0, 2])
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    x = array_ops.reshape(x, final_shape)
    return math_ops.cast(x, self.dtype)

  @distribution_util.AppendDocstring(_multinomial_sample_note)
  def _log_prob(self, counts):
    return self._log_unnormalized_prob(counts) - self._log_normalization(counts)

  def _log_unnormalized_prob(self, counts):
    counts = self._maybe_assert_valid_sample(counts)
    return math_ops.reduce_sum(counts * nn_ops.log_softmax(self.logits), -1)

  def _log_normalization(self, counts):
    counts = self._maybe_assert_valid_sample(counts)
    return -distribution_util.log_combinations(self.total_count, counts)

  def _mean(self):
    return array_ops.identity(self._mean_val)

  def _covariance(self):
    p = self.probs * array_ops.ones_like(
        self.total_count)[..., array_ops.newaxis]
    return array_ops.matrix_set_diag(
        -math_ops.matmul(self._mean_val[..., array_ops.newaxis],
                         p[..., array_ops.newaxis, :]),  # outer product
        self._variance())

  def _variance(self):
    p = self.probs * array_ops.ones_like(
        self.total_count)[..., array_ops.newaxis]
    return self._mean_val - self._mean_val * p

  def _maybe_assert_valid_sample(self, counts):
    """Check counts for proper shape, values, then return tensor version."""
    if not self.validate_args:
      return counts
    counts = distribution_util.embed_check_nonnegative_integer_form(counts)
    return control_flow_ops.with_dependencies([
        check_ops.assert_equal(
            self.total_count, math_ops.reduce_sum(counts, -1),
            message="counts must sum to `self.total_count`"),
    ], counts)