aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/distributions/categorical.py
blob: 66fa9e110c10a0cce55fda0c2294d4d75677e144 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Categorical distribution class."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.ops.distributions import kullback_leibler
from tensorflow.python.ops.distributions import util as distribution_util
from tensorflow.python.util.tf_export import tf_export


def _broadcast_cat_event_and_params(event, params, base_dtype=dtypes.int32):
  """Broadcasts the event or distribution parameters."""
  if event.shape.ndims is None:
    raise NotImplementedError(
        "Cannot broadcast with an event tensor of unknown rank.")

  if event.dtype.is_integer:
    pass
  elif event.dtype.is_floating:
    # When `validate_args=True` we've already ensured int/float casting
    # is closed.
    event = math_ops.cast(event, dtype=dtypes.int32)
  else:
    raise TypeError("`value` should have integer `dtype` or "
                    "`self.dtype` ({})".format(base_dtype))

  if params.get_shape()[:-1] == event.get_shape():
    params = params
  else:
    params *= array_ops.ones_like(
        array_ops.expand_dims(event, -1), dtype=params.dtype)
    params_shape = array_ops.shape(params)[:-1]
    event *= array_ops.ones(params_shape, dtype=event.dtype)
    event.set_shape(tensor_shape.TensorShape(params.get_shape()[:-1]))
  return event, params


@tf_export("distributions.Categorical")
class Categorical(distribution.Distribution):
  """Categorical distribution.

  The Categorical distribution is parameterized by either probabilities or
  log-probabilities of a set of `K` classes. It is defined over the integers
  `{0, 1, ..., K}`.

  The Categorical distribution is closely related to the `OneHotCategorical` and
  `Multinomial` distributions.  The Categorical distribution can be intuited as
  generating samples according to `argmax{ OneHotCategorical(probs) }` itself
  being identical to `argmax{ Multinomial(probs, total_count=1) }.

  #### Mathematical Details

  The probability mass function (pmf) is,

  ```none
  pmf(k; pi) = prod_j pi_j**[k == j]
  ```

  #### Pitfalls

  The number of classes, `K`, must not exceed:
  - the largest integer representable by `self.dtype`, i.e.,
    `2**(mantissa_bits+1)` (IEE754),
  - the maximum `Tensor` index, i.e., `2**31-1`.

  In other words,

  ```python
  K <= min(2**31-1, {
    tf.float16: 2**11,
    tf.float32: 2**24,
    tf.float64: 2**53 }[param.dtype])
  ```

  Note: This condition is validated only when `self.validate_args = True`.

  #### Examples

  Creates a 3-class distribution with the 2nd class being most likely.

  ```python
  dist = Categorical(probs=[0.1, 0.5, 0.4])
  n = 1e4
  empirical_prob = tf.cast(
      tf.histogram_fixed_width(
        dist.sample(int(n)),
        [0., 2],
        nbins=3),
      dtype=tf.float32) / n
  # ==> array([ 0.1005,  0.5037,  0.3958], dtype=float32)
  ```

  Creates a 3-class distribution with the 2nd class being most likely.
  Parameterized by [logits](https://en.wikipedia.org/wiki/Logit) rather than
  probabilities.

  ```python
  dist = Categorical(logits=np.log([0.1, 0.5, 0.4])
  n = 1e4
  empirical_prob = tf.cast(
      tf.histogram_fixed_width(
        dist.sample(int(n)),
        [0., 2],
        nbins=3),
      dtype=tf.float32) / n
  # ==> array([0.1045,  0.5047, 0.3908], dtype=float32)
  ```

  Creates a 3-class distribution with the 3rd class being most likely.
  The distribution functions can be evaluated on counts.

  ```python
  # counts is a scalar.
  p = [0.1, 0.4, 0.5]
  dist = Categorical(probs=p)
  dist.prob(0)  # Shape []

  # p will be broadcast to [[0.1, 0.4, 0.5], [0.1, 0.4, 0.5]] to match counts.
  counts = [1, 0]
  dist.prob(counts)  # Shape [2]

  # p will be broadcast to shape [3, 5, 7, 3] to match counts.
  counts = [[...]] # Shape [5, 7, 3]
  dist.prob(counts)  # Shape [5, 7, 3]
  ```

  """

  def __init__(
      self,
      logits=None,
      probs=None,
      dtype=dtypes.int32,
      validate_args=False,
      allow_nan_stats=True,
      name="Categorical"):
    """Initialize Categorical distributions using class log-probabilities.

    Args:
      logits: An N-D `Tensor`, `N >= 1`, representing the log probabilities
        of a set of Categorical distributions. The first `N - 1` dimensions
        index into a batch of independent distributions and the last dimension
        represents a vector of logits for each class. Only one of `logits` or
        `probs` should be passed in.
      probs: An N-D `Tensor`, `N >= 1`, representing the probabilities
        of a set of Categorical distributions. The first `N - 1` dimensions
        index into a batch of independent distributions and the last dimension
        represents a vector of probabilities for each class. Only one of
        `logits` or `probs` should be passed in.
      dtype: The type of the event samples (default: int32).
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()
    with ops.name_scope(name, values=[logits, probs]) as name:
      self._logits, self._probs = distribution_util.get_logits_and_probs(
          logits=logits,
          probs=probs,
          validate_args=validate_args,
          multidimensional=True,
          name=name)

      if validate_args:
        self._logits = distribution_util.embed_check_categorical_event_shape(
            self._logits)

      logits_shape_static = self._logits.get_shape().with_rank_at_least(1)
      if logits_shape_static.ndims is not None:
        self._batch_rank = ops.convert_to_tensor(
            logits_shape_static.ndims - 1,
            dtype=dtypes.int32,
            name="batch_rank")
      else:
        with ops.name_scope(name="batch_rank"):
          self._batch_rank = array_ops.rank(self._logits) - 1

      logits_shape = array_ops.shape(self._logits, name="logits_shape")
      if logits_shape_static[-1].value is not None:
        self._event_size = ops.convert_to_tensor(
            logits_shape_static[-1].value,
            dtype=dtypes.int32,
            name="event_size")
      else:
        with ops.name_scope(name="event_size"):
          self._event_size = logits_shape[self._batch_rank]

      if logits_shape_static[:-1].is_fully_defined():
        self._batch_shape_val = constant_op.constant(
            logits_shape_static[:-1].as_list(),
            dtype=dtypes.int32,
            name="batch_shape")
      else:
        with ops.name_scope(name="batch_shape"):
          self._batch_shape_val = logits_shape[:-1]
    super(Categorical, self).__init__(
        dtype=dtype,
        reparameterization_type=distribution.NOT_REPARAMETERIZED,
        validate_args=validate_args,
        allow_nan_stats=allow_nan_stats,
        parameters=parameters,
        graph_parents=[self._logits,
                       self._probs],
        name=name)

  @property
  def event_size(self):
    """Scalar `int32` tensor: the number of classes."""
    return self._event_size

  @property
  def logits(self):
    """Vector of coordinatewise logits."""
    return self._logits

  @property
  def probs(self):
    """Vector of coordinatewise probabilities."""
    return self._probs

  def _batch_shape_tensor(self):
    return array_ops.identity(self._batch_shape_val)

  def _batch_shape(self):
    return self.logits.get_shape()[:-1]

  def _event_shape_tensor(self):
    return constant_op.constant([], dtype=dtypes.int32)

  def _event_shape(self):
    return tensor_shape.scalar()

  def _sample_n(self, n, seed=None):
    if self.logits.get_shape().ndims == 2:
      logits_2d = self.logits
    else:
      logits_2d = array_ops.reshape(self.logits, [-1, self.event_size])
    sample_dtype = dtypes.int64 if self.dtype.size > 4 else dtypes.int32
    draws = random_ops.multinomial(
        logits_2d, n, seed=seed, output_dtype=sample_dtype)
    draws = array_ops.reshape(
        array_ops.transpose(draws),
        array_ops.concat([[n], self.batch_shape_tensor()], 0))
    return math_ops.cast(draws, self.dtype)

  def _cdf(self, k):
    k = ops.convert_to_tensor(k, name="k")
    if self.validate_args:
      k = distribution_util.embed_check_integer_casting_closed(
          k, target_dtype=dtypes.int32)

    k, probs = _broadcast_cat_event_and_params(
        k, self.probs, base_dtype=self.dtype.base_dtype)

    # batch-flatten everything in order to use `sequence_mask()`.
    batch_flattened_probs = array_ops.reshape(probs,
                                              (-1, self._event_size))
    batch_flattened_k = array_ops.reshape(k, [-1])

    to_sum_over = array_ops.where(
        array_ops.sequence_mask(batch_flattened_k, self._event_size),
        batch_flattened_probs,
        array_ops.zeros_like(batch_flattened_probs))
    batch_flattened_cdf = math_ops.reduce_sum(to_sum_over, axis=-1)
    # Reshape back to the shape of the argument.
    return array_ops.reshape(batch_flattened_cdf, array_ops.shape(k))

  def _log_prob(self, k):
    k = ops.convert_to_tensor(k, name="k")
    if self.validate_args:
      k = distribution_util.embed_check_integer_casting_closed(
          k, target_dtype=dtypes.int32)
    k, logits = _broadcast_cat_event_and_params(
        k, self.logits, base_dtype=self.dtype.base_dtype)

    return -nn_ops.sparse_softmax_cross_entropy_with_logits(labels=k,
                                                            logits=logits)

  def _entropy(self):
    return -math_ops.reduce_sum(
        nn_ops.log_softmax(self.logits) * self.probs, axis=-1)

  def _mode(self):
    ret = math_ops.argmax(self.logits, dimension=self._batch_rank)
    ret = math_ops.cast(ret, self.dtype)
    ret.set_shape(self.batch_shape)
    return ret


@kullback_leibler.RegisterKL(Categorical, Categorical)
def _kl_categorical_categorical(a, b, name=None):
  """Calculate the batched KL divergence KL(a || b) with a and b Categorical.

  Args:
    a: instance of a Categorical distribution object.
    b: instance of a Categorical distribution object.
    name: (optional) Name to use for created operations.
      default is "kl_categorical_categorical".

  Returns:
    Batchwise KL(a || b)
  """
  with ops.name_scope(name, "kl_categorical_categorical",
                      values=[a.logits, b.logits]):
    # sum(probs log(probs / (1 - probs)))
    delta_log_probs1 = (nn_ops.log_softmax(a.logits) -
                        nn_ops.log_softmax(b.logits))
    return math_ops.reduce_sum(nn_ops.softmax(a.logits) * delta_log_probs1,
                               axis=-1)