aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/data_flow_ops.py
blob: c50fad3211b58155782611423ce88ea384dde147 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Data Flow Operations."""
# pylint: disable=g-bad-name
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re

from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import common_shapes
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_data_flow_ops
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_data_flow_ops import *


def _as_type_list(dtypes):
  """Convert dtypes to a list of types."""
  assert dtypes is not None
  if not (isinstance(dtypes, list) or isinstance(dtypes, tuple)):
    # We have a single type.
    return [dtypes]
  else:
    # We have a list or tuple of types.
    return list(dtypes)


def _as_shape_list(shapes, dtypes):
  """Convert shapes to a list of tuples of int (or None)."""
  if shapes is None: return None
  if isinstance(shapes, tensor_shape.TensorShape):
    shapes = [shapes]
  if not isinstance(shapes, (tuple, list)):
    raise TypeError(
        "shapes must be a TensorShape or a list or tuple of TensorShapes.")
  if all(isinstance(shape, int) for shape in shapes):
    # We have a single shape.
    shapes = [shapes]
  shapes = [tensor_shape.as_shape(shape) for shape in shapes]
  if any(not shape.is_fully_defined() for shape in shapes):
    raise ValueError("All shapes must be fully defined.")
  return shapes


# pylint: disable=protected-access
class QueueBase(object):
  """Base class for queue implementations.

  A queue is a TensorFlow data structure that stores tensors across
  multiple steps, and exposes operations that enqueue and dequeue
  tensors.

  Each queue element is a tuple of one or more tensors, where each
  tuple component has a static dtype, and may have a static shape. The
  queue implementations support versions of enqueue and dequeue that
  handle single elements, versions that support enqueuing and
  dequeuing a batch of elements at once.

  See [`tf.FIFOQueue`](#FIFOQueue) and
  [`tf.RandomShuffleQueue`](#RandomShuffleQueue) for concrete
  implementations of this class, and instructions on how to create
  them.

  @@enqueue
  @@enqueue_many

  @@dequeue
  @@dequeue_many

  @@size

  @@close

  """

  def __init__(self, dtypes, shapes, queue_ref):
    """Constructs a queue object from a queue reference.

    Args:
      dtypes:  A list of types.  The length of dtypes must equal the number
        of tensors in each element.
      shapes: Constraints on the shapes of tensors in an element:
        A list of shape tuples or None. This list is the same length
        as dtypes.  If the shape of any tensors in the element are constrained,
        all must be; shapes can be None if the shapes should not be constrained.
      queue_ref: The queue reference, i.e. the output of the queue op.
    """
    self._dtypes = dtypes
    if shapes is not None:
      self._shapes = [tensor_shape.TensorShape(s) for s in shapes]
    else:
      self._shapes = [tensor_shape.unknown_shape() for _ in self._dtypes]
    self._queue_ref = queue_ref
    self._name = self._queue_ref.op.name.split("/")[-1]

  @staticmethod
  def from_list(index, queues):
    """Create a queue using the queue reference from `queues[index]`.

    Args:
      index: An integer scalar tensor that determines the input that gets
        selected.
      queues: A list of `QueueBase` objects.

    Returns:
      A `QueueBase` object.

    Raises:
      TypeError: when `queues` is not a list of `QueueBase` objects,
        or when the data types of `queues` are not all the same.
    """
    if ((not queues) or
        (not isinstance(queues, list)) or
        (not all([isinstance(x, QueueBase) for x in queues]))):
      raise TypeError("A list of queues expected")

    dtypes = queues[0].dtypes
    if not all([dtypes == q.dtypes for q in queues[1:]]):
      raise TypeError("Queues do not have matching component dtypes.")

    queue_refs = [x.queue_ref for x in queues]
    selected_queue = control_flow_ops.ref_select(index, queue_refs)
    # TODO(josh11b): Unify the shapes of the queues too?
    return QueueBase(dtypes=dtypes, shapes=None, queue_ref=selected_queue)

  @property
  def queue_ref(self):
    """The underlying queue reference."""
    return self._queue_ref

  @property
  def name(self):
    """The name of the underlying queue."""
    return self._queue_ref.op.name

  @property
  def dtypes(self):
    """The list of dtypes for each component of a queue element."""
    return self._dtypes

  def enqueue(self, vals, name=None):
    """Enqueues one element to this queue.

    If the queue is full when this operation executes, it will block
    until the element has been enqueued.

    Args:
      vals: The tuple of `Tensor` objects to be enqueued.
      name: A name for the operation (optional).

    Returns:
      The operation that enqueues a new tuple of tensors to the queue.
    """
    if name is None:
      name = "%s_enqueue" % self._name
    ret = gen_data_flow_ops._queue_enqueue(self._queue_ref, vals, name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the Queue object.
    for val, shape in zip(ret.inputs[1:], self._shapes):
      val.get_shape().assert_is_compatible_with(shape)

    return ret

  def enqueue_many(self, vals, name=None):
    """Enqueues zero or elements to this queue.

    This operation slices each component tensor along the 0th dimension to
    make multiple queue elements. All of the tensors in `vals` must have the
    same size in the 0th dimension.

    If the queue is full when this operation executes, it will block
    until all of the elements have been enqueued.

    Args:
      vals: The tensor or tuple of tensors from which the queue elements
        are taken.
      name: A name for the operation (optional).

    Returns:
      The operation that enqueues a batch of tuples of tensors to the queue.
    """
    if name is None:
      name = "%s_EnqueueMany" % self._name

    ret = gen_data_flow_ops._queue_enqueue_many(
        self._queue_ref, vals, name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the `QueueBase` object.
    batch_dim = ret.inputs[1].get_shape()[0]
    for val, shape in zip(ret.inputs[1:], self._shapes):
      batch_dim.merge_with(val.get_shape()[0])
      val.get_shape()[1:].assert_is_compatible_with(shape)

    return ret

  def dequeue(self, name=None):
    """Dequeues one element from this queue.

    If the queue is empty when this operation executes, it will block
    until there is an element to dequeue.

    Args:
      name: A name for the operation (optional).

    Returns:
      The tuple of tensors that was dequeued.
    """
    if name is None:
      name = "%s_Dequeue" % self._name
    ret = gen_data_flow_ops._queue_dequeue(
        self._queue_ref, self._dtypes, name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the `QueueBase` object.
    op = ret[0].op
    for output, shape in zip(op.values(), self._shapes):
      output.set_shape(shape)

    return ret if len(ret) != 1 else ret[0]

  def dequeue_many(self, n, name=None):
    """Dequeues and concatenates `n` elements from this queue.

    This operation concatenates queue-element component tensors along
    the 0th dimension to make a single component tensor.  All of the
    components in the dequeued tuple will have size `n` in the 0th dimension.

    If the queue contains fewer than `n` elements when this operation
    executes, it will block until `n` elements have been dequeued.

    Args:
      n: A scalar `Tensor` containing the number of elements to dequeue.
      name: A name for the operation (optional).

    Returns:
      The tuple of concatenated tensors that was dequeued.
    """
    if name is None:
      name = "%s_DequeueMany" % self._name

    ret = gen_data_flow_ops._queue_dequeue_many(
        self._queue_ref, n, self._dtypes, name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the Queue object.
    op = ret[0].op
    batch_dim = tensor_shape.Dimension(tensor_util.ConstantValue(op.inputs[1]))
    for output, shape in zip(op.values(), self._shapes):
      output.set_shape(tensor_shape.TensorShape([batch_dim]).concatenate(shape))

    return ret if len(ret) != 1 else ret[0]

  def close(self, cancel_pending_enqueues=False, name=None):
    """Closes this queue.

    This operation signals that no more elements will be enqueued in
    the given queue. Subsequent `enqueue` and `enqueue_many`
    operations will fail. Subsequent `dequeue` and `dequeue_many`
    operations will continue to succeed if sufficient elements remain
    in the queue. Subsequent `dequeue` and `dequeue_many` operations
    that would block will fail immediately.

    If `cancel_pending_enqueues` is `True`, all pending requests will also
    be cancelled.

    Args:
      cancel_pending_enqueues: (Optional.) A boolean, defaulting to
        `False` (described above).
      name: A name for the operation (optional).

    Returns:
      The operation that closes the queue.
    """
    if name is None:
      name = "%s_Close" % self._name
    return gen_data_flow_ops._queue_close(
        self._queue_ref, cancel_pending_enqueues=cancel_pending_enqueues,
        name=name)

  def size(self, name=None):
    """Compute the number of elements in this queue.

    Args:
      name: A name for the operation (optional).

    Returns:
      A scalar tensor containing the number of elements in this queue.
    """
    if name is None:
      name = "%s_Size" % self._name
    return gen_data_flow_ops._queue_size(self._queue_ref, name=name)


class RandomShuffleQueue(QueueBase):
  """A queue implementation that dequeues elements in a random order.

  See [`tf.QueueBase`](#QueueBase) for a description of the methods on
  this class.

  @@__init__
  """

  def __init__(self, capacity, min_after_dequeue, dtypes, shapes=None,
               seed=None, shared_name=None, name="random_shuffle_queue"):
    """Create a queue that dequeues elements in a random order.

    A `RandomShuffleQueue` has bounded capacity; supports multiple
    concurrent producers and consumers; and provides exactly-once
    delivery.

    A `RandomShuffleQueue` holds a list of up to `capacity`
    elements. Each element is a fixed-length tuple of tensors whose
    dtypes are described by `dtypes`, and whose shapes are optionally
    described by the `shapes` argument.

    If the `shapes` argument is specified, each component of a queue
    element must have the respective fixed shape. If it is
    unspecified, different queue elements may have different shapes,
    but the use of `dequeue_many` is disallowed.

    The `min_after_dequeue` argument allows the caller to specify a
    minimum number of elements that will remain in the queue after a
    `dequeue` or `dequeue_many` operation completes, to ensure a
    minimum level of mixing of elements. This invariant is maintained
    by blocking those operations until sufficient elements have been
    enqueued. The `min_after_dequeue` argument is ignored after the
    queue has been closed.

    Args:
      capacity: An integer. The upper bound on the number of elements
        that may be stored in this queue.
      min_after_dequeue: An integer (described above).
      dtypes:  A list of `DType` objects. The length of `dtypes` must equal
        the number of tensors in each queue element.
      shapes: (Optional.) A list of fully-defined `TensorShape` objects,
        with the same length as `dtypes` or `None`.
      seed: A Python integer. Used to create a random seed. See
        [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
        for behavior.
      shared_name: (Optional.) If non-empty, this queue will be shared under
        the given name across multiple sessions.
      name: Optional name for the queue operation.
    """
    dtypes = _as_type_list(dtypes)
    shapes = _as_shape_list(shapes, dtypes)
    seed1, seed2 = random_seed.get_seed(seed)
    queue_ref = gen_data_flow_ops._random_shuffle_queue(
        component_types=dtypes, shapes=shapes, capacity=capacity,
        min_after_dequeue=min_after_dequeue, seed=seed1, seed2=seed2,
        shared_name=shared_name, name=name)

    super(RandomShuffleQueue, self).__init__(dtypes, shapes, queue_ref)


class FIFOQueue(QueueBase):
  """A queue implementation that dequeues elements in first-in-first out order.

  See [`tf.QueueBase`](#QueueBase) for a description of the methods on
  this class.

  @@__init__
  """

  def __init__(self, capacity, dtypes, shapes=None, shared_name=None,
               name="fifo_queue"):
    """Creates a queue that dequeues elements in a first-in first-out order.

    A `FIFOQueue` has bounded capacity; supports multiple concurrent
    producers and consumers; and provides exactly-once delivery.

    A `FIFOQueue` holds a list of up to `capacity` elements. Each
    element is a fixed-length tuple of tensors whose dtypes are
    described by `dtypes`, and whose shapes are optionally described
    by the `shapes` argument.

    If the `shapes` argument is specified, each component of a queue
    element must have the respective fixed shape. If it is
    unspecified, different queue elements may have different shapes,
    but the use of `dequeue_many` is disallowed.

    Args:
      capacity: An integer. The upper bound on the number of elements
        that may be stored in this queue.
      dtypes:  A list of `DType` objects. The length of `dtypes` must equal
        the number of tensors in each queue element.
      shapes: (Optional.) A list of fully-defined `TensorShape` objects,
        with the same length as `dtypes` or `None`.
      shared_name: (Optional.) If non-empty, this queue will be shared under
        the given name across multiple sessions.
      name: Optional name for the queue operation.
    """
    dtypes = _as_type_list(dtypes)
    shapes = _as_shape_list(shapes, dtypes)
    queue_ref = gen_data_flow_ops._fifo_queue(
        component_types=dtypes, shapes=shapes, capacity=capacity,
        shared_name=shared_name, name=name)

    super(FIFOQueue, self).__init__(dtypes, shapes, queue_ref)


# TODO(josh11b): class BatchQueue(QueueBase):


def initialize_all_tables(name="init_all_tables"):
  """Returns an Op that initializes all tables of the default graph.

  Args:
    name: Optional name for the initialization op.

  Returns:
    An Op that initializes all tables.  Note that if there are
    not tables the returned Op is a NoOp.
  """
  initializers = ops.get_collection(ops.GraphKeys.TABLE_INITIALIZERS)
  if initializers:
    return control_flow_ops.group(*initializers, name=name)
  return control_flow_ops.no_op(name=name)


ops.NoGradient("LookupTableFind")
ops.NoGradient("LookupTableSize")
ops.NoGradient("HashTable")
ops.NoGradient("InitializeTable")


ops.RegisterShape("QueueSize")(common_shapes.scalar_shape)
ops.RegisterShape("Queue")(common_shapes.scalar_shape)
ops.RegisterShape("FIFOQueue")(common_shapes.scalar_shape)
ops.RegisterShape("RandomShuffleQueue")(common_shapes.scalar_shape)


# NOTE(mrry): The following ops use higher-level information in the
# Queue class to provide shape information.
ops.RegisterShape("QueueDequeue")(common_shapes.unknown_shape)
ops.RegisterShape("QueueDequeueMany")(common_shapes.unknown_shape)
ops.RegisterShape("QueueEnqueue")(common_shapes.unknown_shape)
ops.RegisterShape("QueueEnqueueMany")(common_shapes.unknown_shape)


@ops.RegisterShape("QueueClose")
def _ScalarToVoidShape(op):
  """Shape function for ops that take a scalar and produce no outputs."""
  unused_input_shape = op.inputs[0].get_shape().merge_with(
      tensor_shape.scalar())
  return []


@ops.RegisterShape("DynamicPartition")
def _DynamicPartitionShape(op):
  """Shape function for data_flow_ops.dynamic_partition."""
  data_shape = op.inputs[0].get_shape()
  partitions_shape = op.inputs[1].get_shape()
  # If we don't know the rank of partitions, we don't know anything
  mid = partitions_shape.ndims
  if mid is None:
    result_shape = tensor_shape.unknown_shape()
  else:
    # data_shape must start with partitions_shape
    partitions_shape.assert_is_compatible_with(data_shape[:mid])
    # The partition shape is dynamic in the 0th dimension, and matches
    # data_shape in the remaining dimensions.
    result_shape = tensor_shape.TensorShape([None]).concatenate(
        data_shape[mid:])
  return [result_shape] * op.get_attr("num_partitions")


@ops.RegisterShape("DynamicStitch")
def _DynamicStitchShape(op):
  """Shape function for data_flow_ops.dynamic_stitch."""
  num_partitions = op.get_attr("N")
  indices_shapes = [t.get_shape() for t in op.inputs[0:num_partitions]]
  data_shapes = [t.get_shape() for t in op.inputs[num_partitions:]]
  output_shape = tensor_shape.unknown_shape()
  extra_shape = tensor_shape.TensorShape(None)
  for indices_shape, data_shape in zip(indices_shapes, data_shapes):
    indices_ndims = indices_shape.ndims
    if indices_ndims is not None:
      # Assert that data_shape starts with indices_shape
      indices_shape.merge_with(data_shape[:indices_ndims])
      # The rest belongs to output
      extra_shape = extra_shape.merge_with(data_shape[indices_ndims:])
  return [tensor_shape.TensorShape([None]).concatenate(extra_shape)]


@ops.RegisterShape("LookupTableFind")
def _LookupTableFindShape(op):
  """Shape function for data_flow_ops._lookup_table_find."""
  unused_table_shape = op.inputs[0].get_shape().merge_with(
      tensor_shape.scalar())
  shape_in = op.inputs[1].get_shape()
  return [shape_in]


@ops.RegisterShape("LookupTableSize")
def _LookupTableSizeShape(op):
  """Shape function for data_flow_ops._lookup_table_find."""
  unused_table_shape = op.inputs[0].get_shape().merge_with(
      tensor_shape.scalar())
  return [tensor_shape.scalar()]


@ops.RegisterShape("HashTable")
def _HashTableShape(unused_op):
  """Shape function for data_flow_ops._hash_table."""
  return [tensor_shape.scalar()]


@ops.RegisterShape("InitializeTable")
def _InitializeLookupTableShape(op):
  """Shape function for data_flow_ops._initialize_table."""
  unused_table_shape = op.inputs[0].get_shape().merge_with(
      tensor_shape.scalar())
  keys_shape = op.inputs[1].get_shape().with_rank(1)
  unused_values_shape = op.inputs[2].get_shape().merge_with(keys_shape)
  return []