aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/data_flow_ops.py
blob: 97b6f3bd9c9d2613e410f103364c5c5da0ab91c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#==============================================================================
"""Data Flow Operations."""
# pylint: disable=g-bad-name
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import hashlib
import threading

import six

from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.lib.io import python_io
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_data_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
# go/tf-wildcard-import
# pylint: disable=wildcard-import
from tensorflow.python.ops.gen_data_flow_ops import *
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export

# pylint: enable=wildcard-import


def _as_type_list(dtypes):
  """Convert dtypes to a list of types."""
  assert dtypes is not None
  if not (isinstance(dtypes, list) or isinstance(dtypes, tuple)):
    # We have a single type.
    return [dtypes]
  else:
    # We have a list or tuple of types.
    return list(dtypes)


def _as_shape_list(shapes,
                   dtypes,
                   unknown_dim_allowed=False,
                   unknown_rank_allowed=False):
  """Convert shapes to a list of tuples of int (or None)."""
  del dtypes
  if unknown_dim_allowed:
    if (not isinstance(shapes, collections.Sequence) or not shapes or
        any(shape is None or isinstance(shape, int) for shape in shapes)):
      raise ValueError(
          "When providing partial shapes, a list of shapes must be provided.")
  if shapes is None:
    return None
  if isinstance(shapes, tensor_shape.TensorShape):
    shapes = [shapes]
  if not isinstance(shapes, (tuple, list)):
    raise TypeError(
        "shapes must be a TensorShape or a list or tuple of TensorShapes.")
  if all(shape is None or isinstance(shape, int) for shape in shapes):
    # We have a single shape.
    shapes = [shapes]
  shapes = [tensor_shape.as_shape(shape) for shape in shapes]
  if not unknown_dim_allowed:
    if any([not shape.is_fully_defined() for shape in shapes]):
      raise ValueError("All shapes must be fully defined: %s" % shapes)
  if not unknown_rank_allowed:
    if any([shape.dims is None for shape in shapes]):
      raise ValueError("All shapes must have a defined rank: %s" % shapes)

  return shapes


def _as_name_list(names, dtypes):
  if names is None:
    return None
  if not isinstance(names, (list, tuple)):
    names = [names]
  if len(names) != len(dtypes):
    raise ValueError("List of names must have the same length as the list "
                     "of dtypes")
  return list(names)


def _shape_common(s1, s2):
  """The greatest lower bound (ordered by specificity) TensorShape."""
  s1 = tensor_shape.TensorShape(s1)
  s2 = tensor_shape.TensorShape(s2)
  if s1.ndims is None or s2.ndims is None or s1.ndims != s2.ndims:
    return tensor_shape.unknown_shape()
  d = [
      d1 if d1 is not None and d1 == d2 else None
      for (d1, d2) in zip(s1.as_list(), s2.as_list())
  ]
  return tensor_shape.TensorShape(d)


# pylint: disable=protected-access
@tf_export("io.QueueBase", "QueueBase")
@deprecation.deprecated_endpoints("QueueBase")
class QueueBase(object):
  """Base class for queue implementations.

  A queue is a TensorFlow data structure that stores tensors across
  multiple steps, and exposes operations that enqueue and dequeue
  tensors.

  Each queue element is a tuple of one or more tensors, where each
  tuple component has a static dtype, and may have a static shape. The
  queue implementations support versions of enqueue and dequeue that
  handle single elements, versions that support enqueuing and
  dequeuing a batch of elements at once.

  See `tf.FIFOQueue` and
  `tf.RandomShuffleQueue` for concrete
  implementations of this class, and instructions on how to create
  them.
  """

  def __init__(self, dtypes, shapes, names, queue_ref):
    """Constructs a queue object from a queue reference.

    The two optional lists, `shapes` and `names`, must be of the same length
    as `dtypes` if provided.  The values at a given index `i` indicate the
    shape and name to use for the corresponding queue component in `dtypes`.

    Args:
      dtypes:  A list of types.  The length of dtypes must equal the number
        of tensors in each element.
      shapes: Constraints on the shapes of tensors in an element:
        A list of shape tuples or None. This list is the same length
        as dtypes.  If the shape of any tensors in the element are constrained,
        all must be; shapes can be None if the shapes should not be constrained.
      names: Optional list of names.  If provided, the `enqueue()` and
        `dequeue()` methods will use dictionaries with these names as keys.
        Must be None or a list or tuple of the same length as `dtypes`.
      queue_ref: The queue reference, i.e. the output of the queue op.

    Raises:
      ValueError: If one of the arguments is invalid.
    """
    self._dtypes = dtypes
    if shapes is not None:
      if len(shapes) != len(dtypes):
        raise ValueError("Queue shapes must have the same length as dtypes")
      self._shapes = [tensor_shape.TensorShape(s) for s in shapes]
    else:
      self._shapes = [tensor_shape.unknown_shape() for _ in self._dtypes]
    if names is not None:
      if len(names) != len(dtypes):
        raise ValueError("Queue names must have the same length as dtypes")
      self._names = names
    else:
      self._names = None
    self._queue_ref = queue_ref
    if context.executing_eagerly():
      self._name = context.context().scope_name
      self._resource_deleter = resource_variable_ops.EagerResourceDeleter(
          queue_ref, None)
    else:
      self._name = self._queue_ref.op.name.split("/")[-1]

  @staticmethod
  def from_list(index, queues):
    """Create a queue using the queue reference from `queues[index]`.

    Args:
      index: An integer scalar tensor that determines the input that gets
        selected.
      queues: A list of `QueueBase` objects.

    Returns:
      A `QueueBase` object.

    Raises:
      TypeError: When `queues` is not a list of `QueueBase` objects,
        or when the data types of `queues` are not all the same.
    """
    if ((not queues) or (not isinstance(queues, list)) or
        (not all(isinstance(x, QueueBase) for x in queues))):
      raise TypeError("A list of queues expected")

    dtypes = queues[0].dtypes
    if not all([dtypes == q.dtypes for q in queues[1:]]):
      raise TypeError("Queues do not have matching component dtypes.")

    names = queues[0].names
    if not all([names == q.names for q in queues[1:]]):
      raise TypeError("Queues do not have matching component names.")

    queue_shapes = [q.shapes for q in queues]
    reduced_shapes = [
        six.moves.reduce(_shape_common, s) for s in zip(*queue_shapes)
    ]

    queue_refs = array_ops.stack([x.queue_ref for x in queues])
    selected_queue = array_ops.gather(queue_refs, index)
    return QueueBase(
        dtypes=dtypes,
        shapes=reduced_shapes,
        names=names,
        queue_ref=selected_queue)

  @property
  def queue_ref(self):
    """The underlying queue reference."""
    return self._queue_ref

  @property
  def name(self):
    """The name of the underlying queue."""
    if context.executing_eagerly():
      return self._name
    return self._queue_ref.op.name

  @property
  def dtypes(self):
    """The list of dtypes for each component of a queue element."""
    return self._dtypes

  @property
  def shapes(self):
    """The list of shapes for each component of a queue element."""
    return self._shapes

  @property
  def names(self):
    """The list of names for each component of a queue element."""
    return self._names

  def _check_enqueue_dtypes(self, vals):
    """Validate and convert `vals` to a list of `Tensor`s.

    The `vals` argument can be a Tensor, a list or tuple of tensors, or a
    dictionary with tensor values.

    If it is a dictionary, the queue must have been constructed with a
    `names` attribute and the dictionary keys must match the queue names.
    If the queue was constructed with a `names` attribute, `vals` must
    be a dictionary.

    Args:
      vals: A tensor, a list or tuple of tensors, or a dictionary..

    Returns:
      A list of `Tensor` objects.

    Raises:
      ValueError: If `vals` is invalid.
    """
    if isinstance(vals, dict):
      if not self._names:
        raise ValueError("Queue must have names to enqueue a dictionary")
      if sorted(self._names, key=str) != sorted(vals.keys(), key=str):
        raise ValueError("Keys in dictionary to enqueue do not match "
                         "names of Queue.  Dictionary: (%s), Queue: (%s)" %
                         (sorted(vals.keys()), sorted(self._names)))
      # The order of values in `self._names` indicates the order in which the
      # tensors in the dictionary `vals` must be listed.
      vals = [vals[k] for k in self._names]
    else:
      if self._names:
        raise ValueError("You must enqueue a dictionary in a Queue with names")
      if not isinstance(vals, (list, tuple)):
        vals = [vals]

    tensors = []
    for i, (val, dtype) in enumerate(zip(vals, self._dtypes)):
      tensors.append(
          ops.convert_to_tensor(val, dtype=dtype, name="component_%d" % i))

    return tensors

  def _scope_vals(self, vals):
    """Return a list of values to pass to `name_scope()`.

    Args:
      vals: A tensor, a list or tuple of tensors, or a dictionary.

    Returns:
      The values in vals as a list.
    """
    if isinstance(vals, (list, tuple)):
      return vals
    elif isinstance(vals, dict):
      return vals.values()
    else:
      return [vals]

  def enqueue(self, vals, name=None):
    """Enqueues one element to this queue.

    If the queue is full when this operation executes, it will block
    until the element has been enqueued.

    At runtime, this operation may raise an error if the queue is
    `tf.QueueBase.close` before or during its execution. If the
    queue is closed before this operation runs,
    `tf.errors.CancelledError` will be raised. If this operation is
    blocked, and either (i) the queue is closed by a close operation
    with `cancel_pending_enqueues=True`, or (ii) the session is
    `tf.Session.close`,
    `tf.errors.CancelledError` will be raised.

    Args:
      vals: A tensor, a list or tuple of tensors, or a dictionary containing
        the values to enqueue.
      name: A name for the operation (optional).

    Returns:
      The operation that enqueues a new tuple of tensors to the queue.
    """
    with ops.name_scope(name, "%s_enqueue" % self._name,
                        self._scope_vals(vals)) as scope:
      vals = self._check_enqueue_dtypes(vals)

      # NOTE(mrry): Not using a shape function because we need access to
      # the `QueueBase` object.
      for val, shape in zip(vals, self._shapes):
        val.get_shape().assert_is_compatible_with(shape)

      if self._queue_ref.dtype == _dtypes.resource:
        return gen_data_flow_ops.queue_enqueue_v2(
            self._queue_ref, vals, name=scope)
      else:
        return gen_data_flow_ops.queue_enqueue(
            self._queue_ref, vals, name=scope)

  def enqueue_many(self, vals, name=None):
    """Enqueues zero or more elements to this queue.

    This operation slices each component tensor along the 0th dimension to
    make multiple queue elements. All of the tensors in `vals` must have the
    same size in the 0th dimension.

    If the queue is full when this operation executes, it will block
    until all of the elements have been enqueued.

    At runtime, this operation may raise an error if the queue is
    `tf.QueueBase.close` before or during its execution. If the
    queue is closed before this operation runs,
    `tf.errors.CancelledError` will be raised. If this operation is
    blocked, and either (i) the queue is closed by a close operation
    with `cancel_pending_enqueues=True`, or (ii) the session is
    `tf.Session.close`,
    `tf.errors.CancelledError` will be raised.

    Args:
      vals: A tensor, a list or tuple of tensors, or a dictionary
        from which the queue elements are taken.
      name: A name for the operation (optional).

    Returns:
      The operation that enqueues a batch of tuples of tensors to the queue.
    """
    with ops.name_scope(name, "%s_EnqueueMany" % self._name,
                        self._scope_vals(vals)) as scope:
      vals = self._check_enqueue_dtypes(vals)

      # NOTE(mrry): Not using a shape function because we need access to
      # the `QueueBase` object.
      batch_dim = vals[0].get_shape().with_rank_at_least(1)[0]
      for val, shape in zip(vals, self._shapes):
        batch_dim = batch_dim.merge_with(
            val.get_shape().with_rank_at_least(1)[0])
        val.get_shape()[1:].assert_is_compatible_with(shape)

      return gen_data_flow_ops.queue_enqueue_many_v2(
          self._queue_ref, vals, name=scope)

  def _dequeue_return_value(self, tensors):
    """Return the value to return from a dequeue op.

    If the queue has names, return a dictionary with the
    names as keys.  Otherwise return either a single tensor
    or a list of tensors depending on the length of `tensors`.

    Args:
      tensors: List of tensors from the dequeue op.

    Returns:
      A single tensor, a list of tensors, or a dictionary
      of tensors.
    """
    if self._names:
      # The returned values in `tensors` are in the same order as
      # the names in `self._names`.
      return {n: tensors[i] for i, n in enumerate(self._names)}
    elif len(tensors) == 1:
      return tensors[0]
    else:
      return tensors

  def dequeue(self, name=None):
    """Dequeues one element from this queue.

    If the queue is empty when this operation executes, it will block
    until there is an element to dequeue.

    At runtime, this operation may raise an error if the queue is
    `tf.QueueBase.close` before or during its execution. If the
    queue is closed, the queue is empty, and there are no pending
    enqueue operations that can fulfill this request,
    `tf.errors.OutOfRangeError` will be raised. If the session is
    `tf.Session.close`,
    `tf.errors.CancelledError` will be raised.

    Args:
      name: A name for the operation (optional).

    Returns:
      The tuple of tensors that was dequeued.
    """
    if name is None:
      name = "%s_Dequeue" % self._name
    if self._queue_ref.dtype == _dtypes.resource:
      ret = gen_data_flow_ops.queue_dequeue_v2(
          self._queue_ref, self._dtypes, name=name)
    else:
      ret = gen_data_flow_ops.queue_dequeue(
          self._queue_ref, self._dtypes, name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the `QueueBase` object.
    if not context.executing_eagerly():
      op = ret[0].op
      for output, shape in zip(op.values(), self._shapes):
        output.set_shape(shape)

    return self._dequeue_return_value(ret)

  def dequeue_many(self, n, name=None):
    """Dequeues and concatenates `n` elements from this queue.

    This operation concatenates queue-element component tensors along
    the 0th dimension to make a single component tensor.  All of the
    components in the dequeued tuple will have size `n` in the 0th dimension.

    If the queue is closed and there are less than `n` elements left, then an
    `OutOfRange` exception is raised.

    At runtime, this operation may raise an error if the queue is
    `tf.QueueBase.close` before or during its execution. If the
    queue is closed, the queue contains fewer than `n` elements, and
    there are no pending enqueue operations that can fulfill this
    request, `tf.errors.OutOfRangeError` will be raised. If the
    session is `tf.Session.close`,
    `tf.errors.CancelledError` will be raised.

    Args:
      n: A scalar `Tensor` containing the number of elements to dequeue.
      name: A name for the operation (optional).

    Returns:
      The list of concatenated tensors that was dequeued.
    """
    if name is None:
      name = "%s_DequeueMany" % self._name

    ret = gen_data_flow_ops.queue_dequeue_many_v2(
        self._queue_ref, n=n, component_types=self._dtypes, name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the Queue object.
    if not context.executing_eagerly():
      op = ret[0].op
      batch_dim = tensor_shape.Dimension(
          tensor_util.constant_value(op.inputs[1]))
      for output, shape in zip(op.values(), self._shapes):
        output.set_shape(
            tensor_shape.TensorShape([batch_dim]).concatenate(shape))

    return self._dequeue_return_value(ret)

  def dequeue_up_to(self, n, name=None):
    """Dequeues and concatenates `n` elements from this queue.

    **Note** This operation is not supported by all queues.  If a queue does not
    support DequeueUpTo, then a `tf.errors.UnimplementedError` is raised.

    This operation concatenates queue-element component tensors along
    the 0th dimension to make a single component tensor. If the queue
    has not been closed, all of the components in the dequeued tuple
    will have size `n` in the 0th dimension.

    If the queue is closed and there are more than `0` but fewer than
    `n` elements remaining, then instead of raising a
    `tf.errors.OutOfRangeError` like `tf.QueueBase.dequeue_many`,
    less than `n` elements are returned immediately.  If the queue is
    closed and there are `0` elements left in the queue, then a
    `tf.errors.OutOfRangeError` is raised just like in `dequeue_many`.
    Otherwise the behavior is identical to `dequeue_many`.

    Args:
      n: A scalar `Tensor` containing the number of elements to dequeue.
      name: A name for the operation (optional).

    Returns:
      The tuple of concatenated tensors that was dequeued.
    """
    if name is None:
      name = "%s_DequeueUpTo" % self._name

    ret = gen_data_flow_ops.queue_dequeue_up_to_v2(
        self._queue_ref, n=n, component_types=self._dtypes, name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the Queue object.
    if not context.executing_eagerly():
      op = ret[0].op
      for output, shape in zip(op.values(), self._shapes):
        output.set_shape(tensor_shape.TensorShape([None]).concatenate(shape))

    return self._dequeue_return_value(ret)

  def close(self, cancel_pending_enqueues=False, name=None):
    """Closes this queue.

    This operation signals that no more elements will be enqueued in
    the given queue. Subsequent `enqueue` and `enqueue_many`
    operations will fail. Subsequent `dequeue` and `dequeue_many`
    operations will continue to succeed if sufficient elements remain
    in the queue. Subsequently dequeue and dequeue_many operations
    that would otherwise block waiting for more elements (if close
    hadn't been called) will now fail immediately.

    If `cancel_pending_enqueues` is `True`, all pending requests will also
    be canceled.

    Args:
      cancel_pending_enqueues: (Optional.) A boolean, defaulting to
        `False` (described above).
      name: A name for the operation (optional).

    Returns:
      The operation that closes the queue.
    """
    if name is None:
      name = "%s_Close" % self._name
    if self._queue_ref.dtype == _dtypes.resource:
      return gen_data_flow_ops.queue_close_v2(
          self._queue_ref,
          cancel_pending_enqueues=cancel_pending_enqueues,
          name=name)
    else:
      return gen_data_flow_ops.queue_close(
          self._queue_ref,
          cancel_pending_enqueues=cancel_pending_enqueues,
          name=name)

  def is_closed(self, name=None):
    """Returns true if queue is closed.

    This operation returns true if the queue is closed and false if the queue
    is open.

    Args:
      name: A name for the operation (optional).

    Returns:
      True if the queue is closed and false if the queue is open.
    """
    if name is None:
      name = "%s_Is_Closed" % self._name
    if self._queue_ref.dtype == _dtypes.resource:
      return gen_data_flow_ops.queue_is_closed_v2(self._queue_ref, name=name)
    else:
      return gen_data_flow_ops.queue_is_closed_(self._queue_ref, name=name)

  def size(self, name=None):
    """Compute the number of elements in this queue.

    Args:
      name: A name for the operation (optional).

    Returns:
      A scalar tensor containing the number of elements in this queue.
    """
    if name is None:
      name = "%s_Size" % self._name
    if self._queue_ref.dtype == _dtypes.resource:
      return gen_data_flow_ops.queue_size_v2(self._queue_ref, name=name)
    else:
      return gen_data_flow_ops.queue_size(self._queue_ref, name=name)

def _shared_name(shared_name):
  if context.executing_eagerly():
    return str(ops.uid())
  return shared_name


@tf_export("io.RandomShuffleQueue", "RandomShuffleQueue")
@deprecation.deprecated_endpoints("RandomShuffleQueue")
class RandomShuffleQueue(QueueBase):
  """A queue implementation that dequeues elements in a random order.

  See `tf.QueueBase` for a description of the methods on
  this class.
  """

  def __init__(self,
               capacity,
               min_after_dequeue,
               dtypes,
               shapes=None,
               names=None,
               seed=None,
               shared_name=None,
               name="random_shuffle_queue"):
    """Create a queue that dequeues elements in a random order.

    A `RandomShuffleQueue` has bounded capacity; supports multiple
    concurrent producers and consumers; and provides exactly-once
    delivery.

    A `RandomShuffleQueue` holds a list of up to `capacity`
    elements. Each element is a fixed-length tuple of tensors whose
    dtypes are described by `dtypes`, and whose shapes are optionally
    described by the `shapes` argument.

    If the `shapes` argument is specified, each component of a queue
    element must have the respective fixed shape. If it is
    unspecified, different queue elements may have different shapes,
    but the use of `dequeue_many` is disallowed.

    The `min_after_dequeue` argument allows the caller to specify a
    minimum number of elements that will remain in the queue after a
    `dequeue` or `dequeue_many` operation completes, to ensure a
    minimum level of mixing of elements. This invariant is maintained
    by blocking those operations until sufficient elements have been
    enqueued. The `min_after_dequeue` argument is ignored after the
    queue has been closed.

    Args:
      capacity: An integer. The upper bound on the number of elements
        that may be stored in this queue.
      min_after_dequeue: An integer (described above).
      dtypes:  A list of `DType` objects. The length of `dtypes` must equal
        the number of tensors in each queue element.
      shapes: (Optional.) A list of fully-defined `TensorShape` objects
        with the same length as `dtypes`, or `None`.
      names: (Optional.) A list of string naming the components in the queue
        with the same length as `dtypes`, or `None`.  If specified the dequeue
        methods return a dictionary with the names as keys.
      seed: A Python integer. Used to create a random seed. See
        `tf.set_random_seed`
        for behavior.
      shared_name: (Optional.) If non-empty, this queue will be shared under
        the given name across multiple sessions.
      name: Optional name for the queue operation.
    """
    dtypes = _as_type_list(dtypes)
    shapes = _as_shape_list(shapes, dtypes)
    names = _as_name_list(names, dtypes)
    seed1, seed2 = random_seed.get_seed(seed)
    if seed1 is None and seed2 is None:
      seed1, seed2 = 0, 0
    elif seed is None and shared_name is not None:
      # This means that graph seed is provided but op seed is not provided.
      # If shared_name is also provided, make seed2 depend only on the graph
      # seed and shared_name. (seed2 from get_seed() is generally dependent on
      # the id of the last op created.)
      string = (str(seed1) + shared_name).encode("utf-8")
      seed2 = int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF
    queue_ref = gen_data_flow_ops.random_shuffle_queue_v2(
        component_types=dtypes,
        shapes=shapes,
        capacity=capacity,
        min_after_dequeue=min_after_dequeue,
        seed=seed1,
        seed2=seed2,
        shared_name=_shared_name(shared_name),
        name=name)

    super(RandomShuffleQueue, self).__init__(dtypes, shapes, names, queue_ref)


@tf_export("FIFOQueue")
class FIFOQueue(QueueBase):
  """A queue implementation that dequeues elements in first-in first-out order.

  See `tf.QueueBase` for a description of the methods on
  this class.
  """

  def __init__(self,
               capacity,
               dtypes,
               shapes=None,
               names=None,
               shared_name=None,
               name="fifo_queue"):
    """Creates a queue that dequeues elements in a first-in first-out order.

    A `FIFOQueue` has bounded capacity; supports multiple concurrent
    producers and consumers; and provides exactly-once delivery.

    A `FIFOQueue` holds a list of up to `capacity` elements. Each
    element is a fixed-length tuple of tensors whose dtypes are
    described by `dtypes`, and whose shapes are optionally described
    by the `shapes` argument.

    If the `shapes` argument is specified, each component of a queue
    element must have the respective fixed shape. If it is
    unspecified, different queue elements may have different shapes,
    but the use of `dequeue_many` is disallowed.

    Args:
      capacity: An integer. The upper bound on the number of elements
        that may be stored in this queue.
      dtypes:  A list of `DType` objects. The length of `dtypes` must equal
        the number of tensors in each queue element.
      shapes: (Optional.) A list of fully-defined `TensorShape` objects
        with the same length as `dtypes`, or `None`.
      names: (Optional.) A list of string naming the components in the queue
        with the same length as `dtypes`, or `None`.  If specified the dequeue
        methods return a dictionary with the names as keys.
      shared_name: (Optional.) If non-empty, this queue will be shared under
        the given name across multiple sessions.
      name: Optional name for the queue operation.
    """
    dtypes = _as_type_list(dtypes)
    shapes = _as_shape_list(shapes, dtypes)
    names = _as_name_list(names, dtypes)
    queue_ref = gen_data_flow_ops.fifo_queue_v2(
        component_types=dtypes,
        shapes=shapes,
        capacity=capacity,
        shared_name=_shared_name(shared_name),
        name=name)

    super(FIFOQueue, self).__init__(dtypes, shapes, names, queue_ref)


@tf_export("io.PaddingFIFOQueue", "PaddingFIFOQueue")
@deprecation.deprecated_endpoints("PaddingFIFOQueue")
class PaddingFIFOQueue(QueueBase):
  """A FIFOQueue that supports batching variable-sized tensors by padding.

  A `PaddingFIFOQueue` may contain components with dynamic shape, while also
  supporting `dequeue_many`.  See the constructor for more details.

  See `tf.QueueBase` for a description of the methods on
  this class.
  """

  def __init__(self,
               capacity,
               dtypes,
               shapes,
               names=None,
               shared_name=None,
               name="padding_fifo_queue"):
    """Creates a queue that dequeues elements in a first-in first-out order.

    A `PaddingFIFOQueue` has bounded capacity; supports multiple concurrent
    producers and consumers; and provides exactly-once delivery.

    A `PaddingFIFOQueue` holds a list of up to `capacity` elements. Each
    element is a fixed-length tuple of tensors whose dtypes are
    described by `dtypes`, and whose shapes are described by the `shapes`
    argument.

    The `shapes` argument must be specified; each component of a queue
    element must have the respective shape.  Shapes of fixed
    rank but variable size are allowed by setting any shape dimension to None.
    In this case, the inputs' shape may vary along the given dimension, and
    `dequeue_many` will pad the given dimension with zeros up to the maximum
    shape of all elements in the given batch.

    Args:
      capacity: An integer. The upper bound on the number of elements
        that may be stored in this queue.
      dtypes:  A list of `DType` objects. The length of `dtypes` must equal
        the number of tensors in each queue element.
      shapes: A list of `TensorShape` objects, with the same length as
        `dtypes`.  Any dimension in the `TensorShape` containing value
        `None` is dynamic and allows values to be enqueued with
         variable size in that dimension.
      names: (Optional.) A list of string naming the components in the queue
        with the same length as `dtypes`, or `None`.  If specified the dequeue
        methods return a dictionary with the names as keys.
      shared_name: (Optional.) If non-empty, this queue will be shared under
        the given name across multiple sessions.
      name: Optional name for the queue operation.

    Raises:
      ValueError: If shapes is not a list of shapes, or the lengths of dtypes
        and shapes do not match, or if names is specified and the lengths of
        dtypes and names do not match.
    """
    dtypes = _as_type_list(dtypes)
    shapes = _as_shape_list(shapes, dtypes, unknown_dim_allowed=True)
    names = _as_name_list(names, dtypes)
    if len(dtypes) != len(shapes):
      raise ValueError("Shapes must be provided for all components, "
                       "but received %d dtypes and %d shapes." % (len(dtypes),
                                                                  len(shapes)))

    queue_ref = gen_data_flow_ops.padding_fifo_queue_v2(
        component_types=dtypes,
        shapes=shapes,
        capacity=capacity,
        shared_name=_shared_name(shared_name),
        name=name)

    super(PaddingFIFOQueue, self).__init__(dtypes, shapes, names, queue_ref)


@tf_export("io.PriorityQueue", "PriorityQueue")
@deprecation.deprecated_endpoints("PriorityQueue")
class PriorityQueue(QueueBase):
  """A queue implementation that dequeues elements in prioritized order.

  See `tf.QueueBase` for a description of the methods on
  this class.
  """

  def __init__(self,
               capacity,
               types,
               shapes=None,
               names=None,
               shared_name=None,
               name="priority_queue"):
    """Creates a queue that dequeues elements in a first-in first-out order.

    A `PriorityQueue` has bounded capacity; supports multiple concurrent
    producers and consumers; and provides exactly-once delivery.

    A `PriorityQueue` holds a list of up to `capacity` elements. Each
    element is a fixed-length tuple of tensors whose dtypes are
    described by `types`, and whose shapes are optionally described
    by the `shapes` argument.

    If the `shapes` argument is specified, each component of a queue
    element must have the respective fixed shape. If it is
    unspecified, different queue elements may have different shapes,
    but the use of `dequeue_many` is disallowed.

    Enqueues and Dequeues to the `PriorityQueue` must include an additional
    tuple entry at the beginning: the `priority`.  The priority must be
    an int64 scalar (for `enqueue`) or an int64 vector (for `enqueue_many`).

    Args:
      capacity: An integer. The upper bound on the number of elements
        that may be stored in this queue.
      types:  A list of `DType` objects. The length of `types` must equal
        the number of tensors in each queue element, except the first priority
        element.  The first tensor in each element is the priority,
        which must be type int64.
      shapes: (Optional.) A list of fully-defined `TensorShape` objects,
        with the same length as `types`, or `None`.
      names: (Optional.) A list of strings naming the components in the queue
        with the same length as `dtypes`, or `None`.  If specified, the dequeue
        methods return a dictionary with the names as keys.
      shared_name: (Optional.) If non-empty, this queue will be shared under
        the given name across multiple sessions.
      name: Optional name for the queue operation.
    """
    types = _as_type_list(types)
    shapes = _as_shape_list(shapes, types)

    queue_ref = gen_data_flow_ops.priority_queue_v2(
        component_types=types,
        shapes=shapes,
        capacity=capacity,
        shared_name=_shared_name(shared_name),
        name=name)

    priority_dtypes = [_dtypes.int64] + types
    priority_shapes = [()] + shapes if shapes else shapes

    super(PriorityQueue, self).__init__(priority_dtypes, priority_shapes, names,
                                        queue_ref)


# TODO(josh11b): class BatchQueue(QueueBase):


class Barrier(object):
  """Represents a key-value map that persists across graph executions."""

  def __init__(self, types, shapes=None, shared_name=None, name="barrier"):
    """Creates a barrier that persists across different graph executions.

    A barrier represents a key-value map, where each key is a string, and
    each value is a tuple of tensors.

    At runtime, the barrier contains 'complete' and 'incomplete'
    elements. A complete element has defined tensors for all
    components of its value tuple, and may be accessed using
    take_many. An incomplete element has some undefined components in
    its value tuple, and may be updated using insert_many.

    The barrier call `take_many` outputs values in a particular order.
    First, it only outputs completed values.  Second, the order in which
    completed values are returned matches the order in which their very
    first component was inserted into the barrier.  So, for example, for this
    sequence of insertions and removals:

      barrier = Barrier((tf.string, tf.int32), shapes=((), ()))
      barrier.insert_many(0, keys=["k1", "k2"], values=["a", "b"]).run()
      barrier.insert_many(1, keys=["k1"], values=[1]).run()
      barrier.insert_many(0, keys=["k3"], values=["c"]).run()
      barrier.insert_many(1, keys=["k3"], values=[3]).run()
      barrier.insert_many(1, keys=["k2"], values=[2]).run()

      (indices, keys, values) = barrier.take_many(2)
      (indices_val, keys_val, values0_val, values1_val) =
         session.run([indices, keys, values[0], values[1]])

    The output will be (up to permutation of "k1" and "k2"):

      indices_val == (-2**63, -2**63)
      keys_val == ("k1", "k2")
      values0_val == ("a", "b")
      values1_val == (1, 2)

    Note the key "k2" was inserted into the barrier before "k3".  Even though
    "k3" was completed first, both are complete by the time
    take_many is called.  As a result, "k2" is prioritized and "k1" and "k2"
    are returned first.  "k3" remains in the barrier until the next execution
    of `take_many`.  Since "k1" and "k2" had their first insertions into
    the barrier together, their indices are the same (-2**63).  The index
    of "k3" will be -2**63 + 1, because it was the next new inserted key.

    Args:
      types: A single dtype or a tuple of dtypes, corresponding to the
        dtypes of the tensor elements that comprise a value in this barrier.
      shapes: Optional. Constraints on the shapes of tensors in the values:
        a single tensor shape tuple; a tuple of tensor shape tuples
        for each barrier-element tuple component; or None if the shape should
        not be constrained.
      shared_name: Optional. If non-empty, this barrier will be shared under
        the given name across multiple sessions.
      name: Optional name for the barrier op.

    Raises:
      ValueError: If one of the `shapes` indicate no elements.
    """
    self._types = _as_type_list(types)

    if shapes is not None:
      shapes = _as_shape_list(shapes, self._types)
      self._shapes = [tensor_shape.TensorShape(s) for s in shapes]
      for i, shape in enumerate(self._shapes):
        if shape.num_elements() == 0:
          raise ValueError("Empty tensors are not supported, but received "
                           "shape '%s' at index %d" % (shape, i))
    else:
      self._shapes = [tensor_shape.unknown_shape() for _ in self._types]

    self._barrier_ref = gen_data_flow_ops.barrier(
        component_types=self._types,
        shapes=self._shapes,
        shared_name=shared_name,
        name=name)
    if context.executing_eagerly():
      self._name = context.context().scope_name
    else:
      self._name = self._barrier_ref.op.name.split("/")[-1]

  @property
  def barrier_ref(self):
    """Get the underlying barrier reference."""
    return self._barrier_ref

  @property
  def name(self):
    """The name of the underlying barrier."""
    if context.executing_eagerly():
      return self._name
    return self._barrier_ref.op.name

  def insert_many(self, component_index, keys, values, name=None):
    """For each key, assigns the respective value to the specified component.

    This operation updates each element at component_index.

    Args:
      component_index: The component of the value that is being assigned.
      keys: A vector of keys, with length n.
      values: An any-dimensional tensor of values, which are associated with the
        respective keys. The first dimension must have length n.
      name: Optional name for the op.

    Returns:
      The operation that performs the insertion.
    Raises:
      InvalidArgumentsError: If inserting keys and values without elements.
    """
    if name is None:
      name = "%s_BarrierInsertMany" % self._name
    return gen_data_flow_ops.barrier_insert_many(
        self._barrier_ref, keys, values, component_index, name=name)

  def take_many(self,
                num_elements,
                allow_small_batch=False,
                timeout=None,
                name=None):
    """Takes the given number of completed elements from this barrier.

    This operation concatenates completed-element component tensors along
    the 0th dimension to make a single component tensor.

    If barrier has no completed elements, this operation will block
    until there are 'num_elements' elements to take.

    TODO(b/25743580): the semantics of `allow_small_batch` are experimental
    and may be extended to other cases in the future.

    TODO(ebrevdo): If a take_many(allow_small_batch=True) is blocking
    already when the barrier is closed, it will block for ever. Fix this
    by using asynchronous operations.

    Args:
      num_elements: The number of elements to take.
      allow_small_batch: If the barrier is closed, don't block if there are less
        completed elements than requested, but instead return all available
        completed elements.
      timeout: This specifies the number of milliseconds to block
        before returning with DEADLINE_EXCEEDED. (This option is not
        supported yet.)
      name: A name for the operation (optional).

    Returns:
      A tuple of (index, key, value_list).
      "index" is a int64 tensor of length num_elements containing the
        index of the insert_many call for which the very first component of
        the given element was inserted into the Barrier, starting with
        the value -2**63.  Note, this value is different from the
        index of the insert_many call for which the element was completed.
      "key" is a string tensor of length num_elements containing the keys.
      "value_list" is a tuple of tensors, each one with size num_elements
        in the 0th dimension for each component in the barrier's values.

    """
    if name is None:
      name = "%s_BarrierTakeMany" % self._name
    ret = gen_data_flow_ops.barrier_take_many(
        self._barrier_ref,
        num_elements,
        self._types,
        allow_small_batch,
        timeout,
        name=name)

    # NOTE(mrry): Not using a shape function because we need access to
    # the Barrier object.
    if not context.executing_eagerly():
      op = ret[0].op
      if allow_small_batch:
        batch_dim = None
      else:
        batch_dim = tensor_shape.Dimension(
            tensor_util.constant_value(op.inputs[1]))
      op.outputs[0].set_shape(tensor_shape.vector(batch_dim))  # indices
      op.outputs[1].set_shape(tensor_shape.vector(batch_dim))  # keys
      for output, shape in zip(op.outputs[2:], self._shapes):  # value_list
        output.set_shape(
            tensor_shape.TensorShape([batch_dim]).concatenate(shape))

    return ret

  def close(self, cancel_pending_enqueues=False, name=None):
    """Closes this barrier.

    This operation signals that no more new key values will be inserted in the
    given barrier. Subsequent InsertMany operations with new keys will fail.
    InsertMany operations that just complement already existing keys with other
    components, will continue to succeed. Subsequent TakeMany operations will
    continue to succeed if sufficient elements remain in the barrier. Subsequent
    TakeMany operations that would block will fail immediately.

    If `cancel_pending_enqueues` is `True`, all pending requests to the
    underlying queue will also be canceled, and completing of already
    started values is also not acceptable anymore.

    Args:
      cancel_pending_enqueues: (Optional.) A boolean, defaulting to
        `False` (described above).
      name: Optional name for the op.

    Returns:
      The operation that closes the barrier.
    """
    if name is None:
      name = "%s_BarrierClose" % self._name
    return gen_data_flow_ops.barrier_close(
        self._barrier_ref,
        cancel_pending_enqueues=cancel_pending_enqueues,
        name=name)

  def ready_size(self, name=None):
    """Compute the number of complete elements in the given barrier.

    Args:
      name: A name for the operation (optional).

    Returns:
      A single-element tensor containing the number of complete elements in the
      given barrier.
    """
    if name is None:
      name = "%s_BarrierReadySize" % self._name
    return gen_data_flow_ops.barrier_ready_size(self._barrier_ref, name=name)

  def incomplete_size(self, name=None):
    """Compute the number of incomplete elements in the given barrier.

    Args:
      name: A name for the operation (optional).

    Returns:
      A single-element tensor containing the number of incomplete elements in
      the given barrier.
    """
    if name is None:
      name = "%s_BarrierIncompleteSize" % self._name
    return gen_data_flow_ops.barrier_incomplete_size(
        self._barrier_ref, name=name)


@tf_export("ConditionalAccumulatorBase")
class ConditionalAccumulatorBase(object):
  """A conditional accumulator for aggregating gradients.

  Up-to-date gradients (i.e., time step at which gradient was computed is
  equal to the accumulator's time step) are added to the accumulator.

  Extraction of the average gradient is blocked until the required number of
  gradients has been accumulated.
  """

  def __init__(self, dtype, shape, accumulator_ref):
    """Creates a new ConditionalAccumulator.

    Args:
      dtype: Datatype of the accumulated gradients.
      shape: Shape of the accumulated gradients.
      accumulator_ref: A handle to the conditional accumulator, created by sub-
        classes
    """
    self._dtype = dtype
    if shape is not None:
      self._shape = tensor_shape.TensorShape(shape)
    else:
      self._shape = tensor_shape.unknown_shape()
    self._accumulator_ref = accumulator_ref
    if context.executing_eagerly():
      self._name = context.context().scope_name
    else:
      self._name = self._accumulator_ref.op.name.split("/")[-1]

  @property
  def accumulator_ref(self):
    """The underlying accumulator reference."""
    return self._accumulator_ref

  @property
  def name(self):
    """The name of the underlying accumulator."""
    return self._name

  @property
  def dtype(self):
    """The datatype of the gradients accumulated by this accumulator."""
    return self._dtype

  def num_accumulated(self, name=None):
    """Number of gradients that have currently been aggregated in accumulator.

    Args:
      name: Optional name for the operation.

    Returns:
      Number of accumulated gradients currently in accumulator.
    """
    if name is None:
      name = "%s_NumAccumulated" % self._name
    return gen_data_flow_ops.accumulator_num_accumulated(
        self._accumulator_ref, name=name)

  def set_global_step(self, new_global_step, name=None):
    """Sets the global time step of the accumulator.

    The operation logs a warning if we attempt to set to a time step that is
    lower than the accumulator's own time step.

    Args:
      new_global_step: Value of new time step. Can be a variable or a constant
      name: Optional name for the operation.

    Returns:
      Operation that sets the accumulator's time step.
    """
    return gen_data_flow_ops.accumulator_set_global_step(
        self._accumulator_ref,
        math_ops.to_int64(ops.convert_to_tensor(new_global_step)),
        name=name)


@tf_export("ConditionalAccumulator")
class ConditionalAccumulator(ConditionalAccumulatorBase):
  """A conditional accumulator for aggregating gradients.

  Up-to-date gradients (i.e., time step at which gradient was computed is
  equal to the accumulator's time step) are added to the accumulator.

  Extraction of the average gradient is blocked until the required number of
  gradients has been accumulated.
  """

  def __init__(self,
               dtype,
               shape=None,
               shared_name=None,
               name="conditional_accumulator",
               reduction_type="MEAN"):
    """Creates a new ConditionalAccumulator.

    Args:
      dtype: Datatype of the accumulated gradients.
      shape: Shape of the accumulated gradients.
      shared_name: Optional. If non-empty, this accumulator will be shared under
        the given name across multiple sessions.
      name: Optional name for the accumulator.
      reduction_type: Reduction type to use when taking the gradient.
    """
    accumulator_ref = gen_data_flow_ops.conditional_accumulator(
        dtype=dtype,
        shape=shape,
        shared_name=shared_name,
        name=name,
        reduction_type=reduction_type)
    super(ConditionalAccumulator, self).__init__(dtype, shape, accumulator_ref)

  def apply_grad(self, grad, local_step=0, name=None):
    """Attempts to apply a gradient to the accumulator.

    The attempt is silently dropped if the gradient is stale, i.e., local_step
    is less than the accumulator's global time step.

    Args:
      grad: The gradient tensor to be applied.
      local_step: Time step at which the gradient was computed.
      name: Optional name for the operation.

    Returns:
      The operation that (conditionally) applies a gradient to the accumulator.

    Raises:
      ValueError: If grad is of the wrong shape
    """
    grad = ops.convert_to_tensor(grad, self._dtype)
    grad.get_shape().assert_is_compatible_with(self._shape)
    local_step = math_ops.to_int64(ops.convert_to_tensor(local_step))
    return gen_data_flow_ops.accumulator_apply_gradient(
        self._accumulator_ref, local_step=local_step, gradient=grad, name=name)

  def take_grad(self, num_required, name=None):
    """Attempts to extract the average gradient from the accumulator.

    The operation blocks until sufficient number of gradients have been
    successfully applied to the accumulator.

    Once successful, the following actions are also triggered:

    - Counter of accumulated gradients is reset to 0.
    - Aggregated gradient is reset to 0 tensor.
    - Accumulator's internal time step is incremented by 1.

    Args:
      num_required: Number of gradients that needs to have been aggregated
      name: Optional name for the operation

    Returns:
      A tensor holding the value of the average gradient.

    Raises:
      InvalidArgumentError: If num_required < 1
    """
    out = gen_data_flow_ops.accumulator_take_gradient(
        self._accumulator_ref, num_required, dtype=self._dtype, name=name)
    out.set_shape(self._shape)
    return out


@tf_export("sparse.SparseConditionalAccumulator",
           "SparseConditionalAccumulator")
@deprecation.deprecated_endpoints("SparseConditionalAccumulator")
class SparseConditionalAccumulator(ConditionalAccumulatorBase):
  """A conditional accumulator for aggregating sparse gradients.

  Sparse gradients are represented by IndexedSlices.

  Up-to-date gradients (i.e., time step at which gradient was computed is
  equal to the accumulator's time step) are added to the accumulator.

  Extraction of the average gradient is blocked until the required number of
  gradients has been accumulated.

  Args:
    dtype: Datatype of the accumulated gradients.
    shape: Shape of the accumulated gradients.
    shared_name: Optional. If non-empty, this accumulator will be shared under
      the given name across multiple sessions.
    name: Optional name for the accumulator.
    reduction_type: Reduction type to use when taking the gradient.
  """

  def __init__(self,
               dtype,
               shape=None,
               shared_name=None,
               name="sparse_conditional_accumulator",
               reduction_type="MEAN"):
    accumulator_ref = gen_data_flow_ops.sparse_conditional_accumulator(
        dtype=dtype,
        shape=shape,
        shared_name=shared_name,
        name=name,
        reduction_type=reduction_type)
    super(SparseConditionalAccumulator, self).__init__(dtype, shape,
                                                       accumulator_ref)

  def apply_indexed_slices_grad(self, grad, local_step=0, name=None):
    """Attempts to apply a gradient to the accumulator.

    The attempt is silently dropped if the gradient is stale, i.e., local_step
    is less than the accumulator's global time step.

    Args:
      grad: The gradient IndexedSlices to be applied.
      local_step: Time step at which the gradient was computed.
      name: Optional name for the operation.

    Returns:
      The operation that (conditionally) applies a gradient to the accumulator.

    Raises:
      InvalidArgumentError: If grad is of the wrong shape
    """
    return self.apply_grad(
        grad_indices=grad.indices,
        grad_values=grad.values,
        grad_shape=grad.dense_shape,
        local_step=local_step,
        name=name)

  def apply_grad(self,
                 grad_indices,
                 grad_values,
                 grad_shape=None,
                 local_step=0,
                 name=None):
    """Attempts to apply a sparse gradient to the accumulator.

    The attempt is silently dropped if the gradient is stale, i.e., local_step
    is less than the accumulator's global time step.

    A sparse gradient is represented by its indices, values and possibly empty
    or None shape. Indices must be a vector representing the locations of
    non-zero entries in the tensor. Values are the non-zero slices of the
    gradient, and must have the same first dimension as indices, i.e., the nnz
    represented by indices and values must be consistent. Shape, if not empty or
    None, must be consistent with the accumulator's shape (if also provided).

    Example:
      A tensor [[0, 0], [0. 1], [2, 3]] can be represented
        indices: [1,2]
        values: [[0,1],[2,3]]
        shape: [3, 2]

    Args:
      grad_indices: Indices of the sparse gradient to be applied.
      grad_values: Values of the sparse gradient to be applied.
      grad_shape: Shape of the sparse gradient to be applied.
      local_step: Time step at which the gradient was computed.
      name: Optional name for the operation.

    Returns:
      The operation that (conditionally) applies a gradient to the accumulator.

    Raises:
      InvalidArgumentError: If grad is of the wrong shape
    """
    local_step = math_ops.to_int64(ops.convert_to_tensor(local_step))
    return gen_data_flow_ops.sparse_accumulator_apply_gradient(
        self._accumulator_ref,
        local_step=local_step,
        gradient_indices=math_ops.to_int64(grad_indices),
        gradient_values=grad_values,
        gradient_shape=math_ops.to_int64([]
                                         if grad_shape is None else grad_shape),
        has_known_shape=(grad_shape is not None),
        name=name)

  def take_grad(self, num_required, name=None):
    """Attempts to extract the average gradient from the accumulator.

    The operation blocks until sufficient number of gradients have been
    successfully applied to the accumulator.

    Once successful, the following actions are also triggered:
    - Counter of accumulated gradients is reset to 0.
    - Aggregated gradient is reset to 0 tensor.
    - Accumulator's internal time step is incremented by 1.

    Args:
      num_required: Number of gradients that needs to have been aggregated
      name: Optional name for the operation

    Returns:
      A tuple of indices, values, and shape representing the average gradient.

    Raises:
      InvalidArgumentError: If num_required < 1
    """
    return gen_data_flow_ops.sparse_accumulator_take_gradient(
        self._accumulator_ref, num_required, dtype=self._dtype, name=name)

  def take_indexed_slices_grad(self, num_required, name=None):
    """Attempts to extract the average gradient from the accumulator.

    The operation blocks until sufficient number of gradients have been
    successfully applied to the accumulator.

    Once successful, the following actions are also triggered:
    - Counter of accumulated gradients is reset to 0.
    - Aggregated gradient is reset to 0 tensor.
    - Accumulator's internal time step is incremented by 1.

    Args:
      num_required: Number of gradients that needs to have been aggregated
      name: Optional name for the operation

    Returns:
      An IndexedSlices holding the value of the average gradient.

    Raises:
      InvalidArgumentError: If num_required < 1
    """
    return_val = gen_data_flow_ops.sparse_accumulator_take_gradient(
        self._accumulator_ref, num_required, dtype=self._dtype, name=name)
    return ops.IndexedSlices(
        indices=return_val.indices,
        values=return_val.values,
        dense_shape=return_val.shape)


class BaseStagingArea(object):
  """Base class for Staging Areas."""
  _identifier = 0
  _lock = threading.Lock()

  def __init__(self,
               dtypes,
               shapes=None,
               names=None,
               shared_name=None,
               capacity=0,
               memory_limit=0):
    if shared_name is None:
      self._name = (
          ops.get_default_graph().unique_name(self.__class__.__name__))
    elif isinstance(shared_name, six.string_types):
      self._name = shared_name
    else:
      raise ValueError("shared_name must be a string")

    self._dtypes = dtypes

    if shapes is not None:
      if len(shapes) != len(dtypes):
        raise ValueError("StagingArea shapes must be the same length as dtypes")
      self._shapes = [tensor_shape.TensorShape(s) for s in shapes]
    else:
      self._shapes = [tensor_shape.unknown_shape() for _ in self._dtypes]

    if names is not None:
      if len(names) != len(dtypes):
        raise ValueError("StagingArea names must be the same length as dtypes")
      self._names = names
    else:
      self._names = None

    self._capacity = capacity
    self._memory_limit = memory_limit

    # all get and put ops must colocate with this op
    with ops.name_scope("%s_root" % self._name):
      self._coloc_op = control_flow_ops.no_op()

  @property
  def name(self):
    """The name of the staging area."""
    return self._name

  @property
  def dtypes(self):
    """The list of dtypes for each component of a staging area element."""
    return self._dtypes

  @property
  def shapes(self):
    """The list of shapes for each component of a staging area element."""
    return self._shapes

  @property
  def names(self):
    """The list of names for each component of a staging area element."""
    return self._names

  @property
  def capacity(self):
    """The maximum number of elements of this staging area."""
    return self._capacity

  @property
  def memory_limit(self):
    """The maximum number of bytes of this staging area."""
    return self._memory_limit

  def _check_put_dtypes(self, vals, indices=None):
    """Validate and convert `vals` to a list of `Tensor`s.

    The `vals` argument can be a Tensor, a list or tuple of tensors, or a
    dictionary with tensor values.

    If `vals` is a list, then the appropriate indices associated with the
    values must be provided.

    If it is a dictionary, the staging area must have been constructed with a
    `names` attribute and the dictionary keys must match the staging area names.
    `indices` will be inferred from the dictionary keys.
    If the staging area was constructed with a `names` attribute, `vals` must
    be a dictionary.

    Checks that the dtype and shape of each value matches that
    of the staging area.

    Args:
      vals: A tensor, a list or tuple of tensors, or a dictionary.

    Returns:
      A (tensors, indices) tuple where `tensors` is a list of `Tensor` objects
      and `indices` is a list of indices associed with the tensors.

    Raises:
      ValueError: If `vals` or `indices` is invalid.
    """
    if isinstance(vals, dict):
      if not self._names:
        raise ValueError(
            "Staging areas must have names to enqueue a dictionary")
      if not set(vals.keys()).issubset(self._names):
        raise ValueError("Keys in dictionary to put do not match names "
                         "of staging area. Dictionary: (%s), Queue: (%s)" %
                         (sorted(vals.keys()), sorted(self._names)))
      # The order of values in `self._names` indicates the order in which the
      # tensors in the dictionary `vals` must be listed.
      vals, indices, _ = zip(*[(vals[k], i, k)
                               for i, k in enumerate(self._names)
                               if k in vals])
    else:
      if self._names:
        raise ValueError("You must enqueue a dictionary in a staging area "
                         "with names")

      if indices is None:
        raise ValueError("Indices must be supplied when inserting a list "
                         "of tensors")

      if len(indices) != len(vals):
        raise ValueError("Number of indices '%s' doesn't match "
                         "number of values '%s'")

      if not isinstance(vals, (list, tuple)):
        vals = [vals]
        indices = [0]

    # Sanity check number of values
    if not len(vals) <= len(self._dtypes):
      raise ValueError("Unexpected number of inputs '%s' vs '%s'" %
                       (len(vals), len(self._dtypes)))

    tensors = []

    for val, i in zip(vals, indices):
      dtype, shape = self._dtypes[i], self._shapes[i]
      # Check dtype
      if val.dtype != dtype:
        raise ValueError("Datatypes do not match. '%s' != '%s'" %
                         (str(val.dtype), str(dtype)))

      # Check shape
      val.get_shape().assert_is_compatible_with(shape)

      tensors.append(
          ops.convert_to_tensor(val, dtype=dtype, name="component_%d" % i))

    return tensors, indices

  def _create_device_transfers(self, tensors):
    """Encode inter-device transfers if the current device
    is not the same as the Staging Area's device.
    """

    if not isinstance(tensors, (tuple, list)):
      tensors = [tensors]

    curr_device_scope = control_flow_ops.no_op().device

    if curr_device_scope != self._coloc_op.device:
      tensors = [array_ops.identity(t) for t in tensors]

    return tensors

  def _get_return_value(self, tensors, indices):
    """Return the value to return from a get op.

    If the staging area has names, return a dictionary with the
    names as keys.  Otherwise return either a single tensor
    or a list of tensors depending on the length of `tensors`.

    Args:
      tensors: List of tensors from the get op.
      indices: Indices of associated names and shapes

    Returns:
      A single tensor, a list of tensors, or a dictionary
      of tensors.
    """

    tensors = self._create_device_transfers(tensors)

    # Sets shape
    for output, i in zip(tensors, indices):
      output.set_shape(self._shapes[i])

    if self._names:
      # The returned values in `tensors` are in the same order as
      # the names in `self._names`.
      return {self._names[i]: t for t, i in zip(tensors, indices)}
    return tensors

  def _scope_vals(self, vals):
    """Return a list of values to pass to `name_scope()`.

    Args:
      vals: A tensor, a list or tuple of tensors, or a dictionary.

    Returns:
      The values in vals as a list.
    """
    if isinstance(vals, (list, tuple)):
      return vals
    elif isinstance(vals, dict):
      return vals.values()
    else:
      return [vals]


class StagingArea(BaseStagingArea):
  """Class for staging inputs. No ordering guarantees.

  A `StagingArea` is a TensorFlow data structure that stores tensors across
  multiple steps, and exposes operations that can put and get tensors.

  Each `StagingArea` element is a tuple of one or more tensors, where each
  tuple component has a static dtype, and may have a static shape.

  The capacity of a `StagingArea` may be bounded or unbounded.
  It supports multiple concurrent producers and consumers; and
  provides exactly-once delivery.

  Each element of a `StagingArea` is a fixed-length tuple of tensors whose
  dtypes are described by `dtypes`, and whose shapes are optionally described
  by the `shapes` argument.

  If the `shapes` argument is specified, each component of a staging area
  element must have the respective fixed shape. If it is
  unspecified, different elements may have different shapes,

  It can be configured with a capacity in which case
  put(values) will block until space becomes available.

  Similarly, it can be configured with a memory limit which
  will block put(values) until space is available.
  This is mostly useful for limiting the number of tensors on
  devices such as GPUs.

  All get() and peek() commands block if the requested data
  is not present in the Staging Area.

  """

  def __init__(self,
               dtypes,
               shapes=None,
               names=None,
               shared_name=None,
               capacity=0,
               memory_limit=0):
    """Constructs a staging area object.

    The two optional lists, `shapes` and `names`, must be of the same length
    as `dtypes` if provided.  The values at a given index `i` indicate the
    shape and name to use for the corresponding queue component in `dtypes`.

    The device scope at the time of object creation determines where the
    storage for the `StagingArea` will reside.  Calls to `put` will incur a copy
    to this memory space, if necessary.  Tensors returned by `get` will be
    placed according to the device scope when `get` is called.

    Args:
      dtypes:  A list of types.  The length of dtypes must equal the number
        of tensors in each element.
      shapes: (Optional.) Constraints on the shapes of tensors in an element.
        A list of shape tuples or None. This list is the same length
        as dtypes.  If the shape of any tensors in the element are constrained,
        all must be; shapes can be None if the shapes should not be constrained.
      names: (Optional.) If provided, the `get()` and
        `put()` methods will use dictionaries with these names as keys.
        Must be None or a list or tuple of the same length as `dtypes`.
      shared_name: (Optional.) A name to be used for the shared object. By
        passing the same name to two different python objects they will share
        the underlying staging area. Must be a string.
      capacity: (Optional.) Maximum number of elements.
        An integer. If zero, the Staging Area is unbounded
      memory_limit: (Optional.) Maximum number of bytes of all tensors
        in the Staging Area.
        An integer. If zero, the Staging Area is unbounded

    Raises:
      ValueError: If one of the arguments is invalid.
    """

    super(StagingArea, self).__init__(dtypes, shapes, names, shared_name,
                                      capacity, memory_limit)

  def put(self, values, name=None):
    """Create an op that places a value into the staging area.

    This operation will block if the `StagingArea` has reached
    its capacity.

    Args:
      values: A single tensor, a list or tuple of tensors, or a dictionary with
        tensor values. The number of elements must match the length of the
        list provided to the dtypes argument when creating the StagingArea.
      name: A name for the operation (optional).

    Returns:
        The created op.

    Raises:
      ValueError: If the number or type of inputs don't match the staging area.
    """
    with ops.name_scope(name, "%s_put" % self._name,
                        self._scope_vals(values)) as scope:

      if not isinstance(values, (list, tuple, dict)):
        values = [values]

      # Hard-code indices for this staging area
      indices = list(six.moves.range(len(values)))
      vals, _ = self._check_put_dtypes(values, indices)

      with ops.colocate_with(self._coloc_op):
        op = gen_data_flow_ops.stage(
            values=vals,
            shared_name=self._name,
            name=scope,
            capacity=self._capacity,
            memory_limit=self._memory_limit)

      return op

  def __internal_get(self, get_fn, name):
    with ops.colocate_with(self._coloc_op):
      ret = get_fn()

    indices = list(six.moves.range(len(self._dtypes)))  # Hard coded
    return self._get_return_value(ret, indices)

  def get(self, name=None):
    """Gets one element from this staging area.

    If the staging area is empty when this operation executes, it will block
    until there is an element to dequeue.

    Note that unlike others ops that can block, like the queue Dequeue
    operations, this can stop other work from happening.  To avoid this, the
    intended use is for this to be called only when there will be an element
    already available.  One method for doing this in a training loop would be to
    run a `put()` call during a warmup session.run call, and then call both
    `get()` and `put()` in each subsequent step.

    The placement of the returned tensor will be determined by the current
    device scope when this function is called.

    Args:
      name: A name for the operation (optional).

    Returns:
      The tuple of tensors that was gotten.
    """
    if name is None:
      name = "%s_get" % self._name

    # pylint: disable=bad-continuation
    fn = lambda: gen_data_flow_ops.unstage(dtypes=self._dtypes,
                    shared_name=self._name, name=name,
                    capacity=self._capacity,
                    memory_limit=self._memory_limit)
    # pylint: enable=bad-continuation

    return self.__internal_get(fn, name)

  def peek(self, index, name=None):
    """Peeks at an element in the staging area.

    If the staging area is too small to contain the element at
    the specified index, it will block until enough elements
    are inserted to complete the operation.

    The placement of the returned tensor will be determined by
    the current device scope when this function is called.

    Args:
      index: The index of the tensor within the staging area
              to look up.
      name: A name for the operation (optional).

    Returns:
      The tuple of tensors that was gotten.
    """
    if name is None:
      name = "%s_peek" % self._name

    # pylint: disable=bad-continuation
    fn = lambda: gen_data_flow_ops.stage_peek(index,
                    dtypes=self._dtypes, shared_name=self._name,
                    name=name, capacity=self._capacity,
                    memory_limit=self._memory_limit)
    # pylint: enable=bad-continuation

    return self.__internal_get(fn, name)

  def size(self, name=None):
    """Returns the number of elements in the staging area.

    Args:
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if name is None:
      name = "%s_size" % self._name

    return gen_data_flow_ops.stage_size(
        name=name,
        shared_name=self._name,
        dtypes=self._dtypes,
        capacity=self._capacity,
        memory_limit=self._memory_limit)

  def clear(self, name=None):
    """Clears the staging area.

    Args:
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if name is None:
      name = "%s_clear" % self._name

    return gen_data_flow_ops.stage_clear(
        name=name,
        shared_name=self._name,
        dtypes=self._dtypes,
        capacity=self._capacity,
        memory_limit=self._memory_limit)


class MapStagingArea(BaseStagingArea):
  """A `MapStagingArea` is a TensorFlow data structure that stores tensors
  across multiple steps, and exposes operations that can put and get tensors.

  Each `MapStagingArea` element is a (key, value) pair.
  Only int64 keys are supported, other types should be
  hashed to produce a key.
  Values are a tuple of one or more tensors.
  Each tuple component has a static dtype,
  and may have a static shape.

  The capacity of a `MapStagingArea` may be bounded or unbounded.
  It supports multiple concurrent producers and consumers; and
  provides exactly-once delivery.

  Each value tuple of a `MapStagingArea` is a fixed-length tuple of tensors
  whose
  dtypes are described by `dtypes`, and whose shapes are optionally described
  by the `shapes` argument.

  If the `shapes` argument is specified, each component of a staging area
  element must have the respective fixed shape. If it is
  unspecified, different elements may have different shapes,

  It behaves like an associative container with support for:

   - put(key, values)
   - peek(key)         like dict.get(key)
   - get(key)          like dict.pop(key)
   - get(key=None)     like dict.popitem()
   - size()
   - clear()

  If ordered a tree structure ordered by key will be used and
  get(key=None) will remove (key, value) pairs in increasing key order.
  Otherwise a hashtable

  It can be configured with a capacity in which case
  put(key, values) will block until space becomes available.

  Similarly, it can be configured with a memory limit which
  will block put(key, values) until space is available.
  This is mostly useful for limiting the number of tensors on
  devices such as GPUs.

  All get() and peek() commands block if the requested
  (key, value) pair is not present in the staging area.

  Partial puts are supported and will be placed in an incomplete
  map until such time as all values associated with the key have
  been inserted. Once completed, this (key, value) pair will be
  inserted into the map. Data in the incomplete map
  counts towards the memory limit, but not towards capacity limit.

  Partial gets from the map are also supported.
  This removes the partially requested tensors from the entry,
  but the entry is only removed from the map once all tensors
  associated with it are removed.
  """

  def __init__(self,
               dtypes,
               shapes=None,
               names=None,
               shared_name=None,
               ordered=False,
               capacity=0,
               memory_limit=0):
    """Args:

      dtypes:  A list of types.  The length of dtypes must equal the number
        of tensors in each element.
      capacity: (Optional.) Maximum number of elements.
        An integer. If zero, the Staging Area is unbounded
      memory_limit: (Optional.) Maximum number of bytes of all tensors
        in the Staging Area (excluding keys).
        An integer. If zero, the Staging Area is unbounded
      ordered: (Optional.) If True the underlying data structure
        is a tree ordered on key. Otherwise assume a hashtable.
      shapes: (Optional.) Constraints on the shapes of tensors in an element.
        A list of shape tuples or None. This list is the same length
        as dtypes.  If the shape of any tensors in the element are constrained,
        all must be; shapes can be None if the shapes should not be constrained.
      names: (Optional.) If provided, the `get()` and
        `put()` methods will use dictionaries with these names as keys.
        Must be None or a list or tuple of the same length as `dtypes`.
      shared_name: (Optional.) A name to be used for the shared object. By
        passing the same name to two different python objects they will share
        the underlying staging area. Must be a string.

    Raises:
      ValueError: If one of the arguments is invalid.

    """

    super(MapStagingArea, self).__init__(dtypes, shapes, names, shared_name,
                                         capacity, memory_limit)

    # Defer to different methods depending if the map is ordered
    self._ordered = ordered

    if ordered:
      self._put_fn = gen_data_flow_ops.ordered_map_stage
      self._pop_fn = gen_data_flow_ops.ordered_map_unstage
      self._popitem_fn = gen_data_flow_ops.ordered_map_unstage_no_key
      self._peek_fn = gen_data_flow_ops.ordered_map_peek
      self._size_fn = gen_data_flow_ops.ordered_map_size
      self._incomplete_size_fn = gen_data_flow_ops.ordered_map_incomplete_size
      self._clear_fn = gen_data_flow_ops.ordered_map_clear
    else:
      self._put_fn = gen_data_flow_ops.map_stage
      self._pop_fn = gen_data_flow_ops.map_unstage
      self._popitem_fn = gen_data_flow_ops.map_unstage_no_key
      self._peek_fn = gen_data_flow_ops.map_peek
      self._size_fn = gen_data_flow_ops.map_size
      self._incomplete_size_fn = gen_data_flow_ops.map_incomplete_size
      self._clear_fn = gen_data_flow_ops.map_clear

  def put(self, key, vals, indices=None, name=None):
    """Create an op that stores the (key, vals) pair in the staging area.

    Incomplete puts are possible, preferably using a dictionary for vals
    as the appropriate dtypes and shapes can be inferred from the value names
    dictionary key values. If vals is a list or tuple, indices must
    also be specified so that the op knows at which element position
    to perform the insert.

    This operation will block if the capacity or memory limit of this
    container is reached.

    Args:
        key: Key associated with the data
        vals: Tensor (or a dict/tuple of Tensors) to place
                into the staging area.
        indices: (Optional) if vals is a tuple/list, this is required.
        name: A name for the operation (optional)

    Returns:
        The created op

    Raises:
        ValueError: If the number or type of inputs don't match the staging
        area.
    """

    with ops.name_scope(name, "%s_put" % self._name,
                        self._scope_vals(vals)) as scope:

      vals, indices = self._check_put_dtypes(vals, indices)

      with ops.colocate_with(self._coloc_op):
        op = self._put_fn(
            key,
            indices,
            vals,
            dtypes=self._dtypes,
            shared_name=self._name,
            name=scope,
            capacity=self._capacity,
            memory_limit=self._memory_limit)
    return op

  def _get_indices_and_dtypes(self, indices=None):
    if indices is None:
      indices = list(six.moves.range(len(self._dtypes)))

    if not isinstance(indices, (tuple, list)):
      raise TypeError("Invalid indices type '%s'" % type(indices))

    if len(indices) == 0:
      raise ValueError("Empty indices")

    if all(isinstance(i, str) for i in indices):
      if self._names is None:
        raise ValueError("String indices provided '%s', but this Staging Area "
                         "was not created with names." % indices)

      try:
        indices = [self._names.index(n) for n in indices]
      except ValueError:
        raise ValueError("Named index '%s' not in "
                         "Staging Area names '%s'" % (n, self._names))
    elif all(isinstance(i, int) for i in indices):
      pass
    else:
      raise TypeError("Mixed types in indices '%s'. "
                      "May only be str or int" % indices)

    dtypes = [self._dtypes[i] for i in indices]

    return indices, dtypes

  def peek(self, key, indices=None, name=None):
    """Peeks at staging area data associated with the key.

    If the key is not in the staging area, it will block
    until the associated (key, value) is inserted.

    Args:
        key: Key associated with the required data
        indices: Partial list of tensors to retrieve (optional).
                A list of integer or string indices.
                String indices are only valid if the Staging Area
                has names associated with it.
        name: A name for the operation (optional)

    Returns:
        The created op
    """

    if name is None:
      name = "%s_pop" % self._name

    indices, dtypes = self._get_indices_and_dtypes(indices)

    with ops.colocate_with(self._coloc_op):
      result = self._peek_fn(
          key,
          shared_name=self._name,
          indices=indices,
          dtypes=dtypes,
          name=name,
          capacity=self._capacity,
          memory_limit=self._memory_limit)

    return self._get_return_value(result, indices)

  def get(self, key=None, indices=None, name=None):
    """If the key is provided, the associated (key, value) is returned from the staging area.

    If the key is not in the staging area, this method will block until
    the associated (key, value) is inserted.
    If no key is provided and the staging area is ordered,
    the (key, value) with the smallest key will be returned.
    Otherwise, a random (key, value) will be returned.

    If the staging area is empty when this operation executes,
    it will block until there is an element to dequeue.

    Args:
        key: Key associated with the required data (Optional)
        indices: Partial list of tensors to retrieve (optional).
                A list of integer or string indices.
                String indices are only valid if the Staging Area
                has names associated with it.
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if key is None:
      return self._popitem(indices=indices, name=name)
    else:
      return self._pop(key, indices=indices, name=name)

  def _pop(self, key, indices=None, name=None):
    """Remove and return the associated (key, value) is returned from the staging area.

    If the key is not in the staging area, this method will block until
    the associated (key, value) is inserted.
    Args:
        key: Key associated with the required data
        indices: Partial list of tensors to retrieve (optional).
                A list of integer or string indices.
                String indices are only valid if the Staging Area
                has names associated with it.
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if name is None:
      name = "%s_get" % self._name

    indices, dtypes = self._get_indices_and_dtypes(indices)

    with ops.colocate_with(self._coloc_op):
      result = self._pop_fn(
          key,
          shared_name=self._name,
          indices=indices,
          dtypes=dtypes,
          name=name,
          capacity=self._capacity,
          memory_limit=self._memory_limit)

    return key, self._get_return_value(result, indices)

  def _popitem(self, indices=None, name=None):
    """If the staging area is ordered, the (key, value) with the smallest key will be returned.

    Otherwise, a random (key, value) will be returned.
    If the staging area is empty when this operation executes,
    it will block until there is an element to dequeue.

    Args:
        key: Key associated with the required data
        indices: Partial list of tensors to retrieve (optional).
                A list of integer or string indices.
                String indices are only valid if the Staging Area
                has names associated with it.
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if name is None:
      name = "%s_get_nokey" % self._name

    indices, dtypes = self._get_indices_and_dtypes(indices)

    with ops.colocate_with(self._coloc_op):
      key, result = self._popitem_fn(
          shared_name=self._name,
          indices=indices,
          dtypes=dtypes,
          name=name,
          capacity=self._capacity,
          memory_limit=self._memory_limit)

    # Separate keys and results out from
    # underlying namedtuple
    key = self._create_device_transfers(key)[0]
    result = self._get_return_value(result, indices)

    return key, result

  def size(self, name=None):
    """Returns the number of elements in the staging area.

    Args:
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if name is None:
      name = "%s_size" % self._name

    return self._size_fn(
        shared_name=self._name,
        name=name,
        dtypes=self._dtypes,
        capacity=self._capacity,
        memory_limit=self._memory_limit)

  def incomplete_size(self, name=None):
    """Returns the number of incomplete elements in the staging area.

    Args:
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if name is None:
      name = "%s_incomplete_size" % self._name

    return self._incomplete_size_fn(
        shared_name=self._name,
        name=name,
        dtypes=self._dtypes,
        capacity=self._capacity,
        memory_limit=self._memory_limit)

  def clear(self, name=None):
    """Clears the staging area.

    Args:
        name: A name for the operation (optional)

    Returns:
        The created op
    """
    if name is None:
      name = "%s_clear" % self._name

    return self._clear_fn(
        shared_name=self._name,
        name=name,
        dtypes=self._dtypes,
        capacity=self._capacity,
        memory_limit=self._memory_limit)


class RecordInput(object):
  """RecordInput asynchronously reads and randomly yields TFRecords.

  A RecordInput Op will continuously read a batch of records asynchronously
  into a buffer of some fixed capacity. It can also asynchronously yield
  random records from this buffer.

  It will not start yielding until at least `buffer_size / 2` elements have been
  placed into the buffer so that sufficient randomization can take place.

  The order the files are read will be shifted each epoch by `shift_amount` so
  that the data is presented in a different order every epoch.
  """

  def __init__(self,
               file_pattern,
               batch_size=1,
               buffer_size=1,
               parallelism=1,
               shift_ratio=0,
               seed=0,
               name=None,
               batches=None,
               compression_type=None):
    """Constructs a RecordInput Op.

    Args:
      file_pattern: File path to the dataset, possibly containing wildcards.
        All matching files will be iterated over each epoch.
      batch_size: How many records to return at a time.
      buffer_size: The maximum number of records the buffer will contain.
      parallelism: How many reader threads to use for reading from files.
      shift_ratio: What percentage of the total number files to move the start
        file forward by each epoch.
      seed: Specify the random number seed used by generator that randomizes
        records.
      name: Optional name for the operation.
      batches: None by default, creating a single batch op. Otherwise specifies
        how many batches to create, which are returned as a list when
        `get_yield_op()` is called. An example use case is to split processing
        between devices on one computer.
      compression_type: The type of compression for the file. Currently ZLIB and
        GZIP are supported. Defaults to none.

    Raises:
      ValueError: If one of the arguments is invalid.
    """
    self._batch_size = batch_size
    if batches is not None:
      self._batch_size *= batches
    self._batches = batches
    self._file_pattern = file_pattern
    self._buffer_size = buffer_size
    self._parallelism = parallelism
    self._shift_ratio = shift_ratio
    self._seed = seed
    self._name = name
    self._compression_type = python_io.TFRecordCompressionType.NONE
    if compression_type is not None:
      self._compression_type = compression_type

  def get_yield_op(self):
    """Adds a node that yields a group of records every time it is executed.
    If RecordInput `batches` parameter is not None, it yields a list of
    record batches with the specified `batch_size`.
    """
    compression_type = python_io.TFRecordOptions.get_compression_type_string(
        python_io.TFRecordOptions(self._compression_type))
    records = gen_data_flow_ops.record_input(
        file_pattern=self._file_pattern,
        file_buffer_size=self._buffer_size,
        file_parallelism=self._parallelism,
        file_shuffle_shift_ratio=self._shift_ratio,
        batch_size=self._batch_size,
        file_random_seed=self._seed,
        compression_type=compression_type,
        name=self._name)
    if self._batches is None:
      return records
    else:
      with ops.name_scope(self._name):
        batch_list = [[] for _ in six.moves.range(self._batches)]
        records = array_ops.split(records, self._batch_size, 0)
        records = [array_ops.reshape(record, []) for record in records]
        for index, protobuf in zip(six.moves.range(len(records)), records):
          batch_index = index % self._batches
          batch_list[batch_index].append(protobuf)
        return batch_list