aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/ops/clip_ops.py
blob: 78b395a6c185d2f948f78a8a19d1a8eeaa6a93f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Operations for clipping (gradient, weight) tensors to min/max values."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

import six

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gen_nn_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import numerics
from tensorflow.python.util.tf_export import tf_export


@tf_export("clip_by_value")
def clip_by_value(t, clip_value_min, clip_value_max,
                  name=None):
  """Clips tensor values to a specified min and max.

  Given a tensor `t`, this operation returns a tensor of the same type and
  shape as `t` with its values clipped to `clip_value_min` and `clip_value_max`.
  Any values less than `clip_value_min` are set to `clip_value_min`. Any values
  greater than `clip_value_max` are set to `clip_value_max`.

  Note: `clip_value_min` needs to be smaller or equal to `clip_value_max` for
  correct results.

  Args:
    t: A `Tensor`.
    clip_value_min: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape
      as `t`. The minimum value to clip by.
    clip_value_max: A 0-D (scalar) `Tensor`, or a `Tensor` with the same shape
      as `t`. The maximum value to clip by.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.

  Raises:
    ValueError: If the clip tensors would trigger array broadcasting
      that would make the returned tensor larger than the input.
  """
  with ops.name_scope(name, "clip_by_value",
                      [t, clip_value_min, clip_value_max]) as name:
    t = ops.convert_to_tensor(t, name="t")

    # Go through list of tensors, for each value in each tensor clip
    t_min = math_ops.minimum(t, clip_value_max)
    # Assert that the shape is compatible with the initial shape,
    # to prevent unintentional broadcasting.
    _ = t.shape.merge_with(t_min.shape)

    t_max = math_ops.maximum(t_min, clip_value_min, name=name)
    _ = t.shape.merge_with(t_max.shape)

  return t_max
  # TODO(scottzhu): switch to use new implmentation in 2 weeks.
    # return gen_math_ops.clip_by_value(
    #     t, clip_value_min, clip_value_max, name=name)


# TODO(scottzhu): switch to use new implmentation in 2 weeks.
# @ops.RegisterGradient("ClipByValue")
def _clip_by_value_grad(op, grad):
  """Returns grad of clip_by_value."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.inputs[2]
  gdtype = grad.dtype
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  sz = array_ops.shape(z)
  gradshape = array_ops.shape(grad)
  zeros = array_ops.zeros(gradshape, gdtype)
  xymask = math_ops.less(x, y)
  xzmask = math_ops.greater(x, z)
  rx, ry = gen_array_ops.broadcast_gradient_args(sx, sy)
  rx, rz = gen_array_ops.broadcast_gradient_args(sx, sz)
  xgrad = array_ops.where(math_ops.logical_or(xymask, xzmask), zeros, grad)
  ygrad = array_ops.where(xymask, grad, zeros)
  zgrad = array_ops.where(xzmask, grad, zeros)
  gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx)
  gy = array_ops.reshape(math_ops.reduce_sum(ygrad, ry), sy)
  gz = array_ops.reshape(math_ops.reduce_sum(zgrad, rz), sz)
  return (gx, gy, gz)


@tf_export("clip_by_norm")
def clip_by_norm(t, clip_norm, axes=None, name=None):
  """Clips tensor values to a maximum L2-norm.

  Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
  normalizes `t` so that its L2-norm is less than or equal to `clip_norm`,
  along the dimensions given in `axes`. Specifically, in the default case
  where all dimensions are used for calculation, if the L2-norm of `t` is
  already less than or equal to `clip_norm`, then `t` is not modified. If
  the L2-norm is greater than `clip_norm`, then this operation returns a
  tensor of the same type and shape as `t` with its values set to:

  `t * clip_norm / l2norm(t)`

  In this case, the L2-norm of the output tensor is `clip_norm`.

  As another example, if `t` is a matrix and `axes == [1]`, then each row
  of the output will have L2-norm equal to `clip_norm`. If `axes == [0]`
  instead, each column of the output will be clipped.

  This operation is typically used to clip gradients before applying them with
  an optimizer.

  Args:
    t: A `Tensor`.
    clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
    axes: A 1-D (vector) `Tensor` of type int32 containing the dimensions
      to use for computing the L2-norm. If `None` (the default), uses all
      dimensions.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.
  """
  with ops.name_scope(name, "clip_by_norm", [t, clip_norm]) as name:
    t = ops.convert_to_tensor(t, name="t")

    # Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
    l2norm = math_ops.sqrt(math_ops.reduce_sum(t * t, axes, keepdims=True))
    intermediate = t * clip_norm
    # Assert that the shape is compatible with the initial shape,
    # to prevent unintentional broadcasting.
    _ = t.shape.merge_with(intermediate.shape)
    tclip = array_ops.identity(
        intermediate / math_ops.maximum(l2norm, clip_norm), name=name)

  return tclip


@tf_export("global_norm")
def global_norm(t_list, name=None):
  """Computes the global norm of multiple tensors.

  Given a tuple or list of tensors `t_list`, this operation returns the
  global norm of the elements in all tensors in `t_list`. The global norm is
  computed as:

  `global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))`

  Any entries in `t_list` that are of type None are ignored.

  Args:
    t_list: A tuple or list of mixed `Tensors`, `IndexedSlices`, or None.
    name: A name for the operation (optional).

  Returns:
    A 0-D (scalar) `Tensor` of type `float`.

  Raises:
    TypeError: If `t_list` is not a sequence.
  """
  if (not isinstance(t_list, collections.Sequence)
      or isinstance(t_list, six.string_types)):
    raise TypeError("t_list should be a sequence")
  t_list = list(t_list)
  with ops.name_scope(name, "global_norm", t_list) as name:
    values = [
        ops.convert_to_tensor(
            t.values if isinstance(t, ops.IndexedSlices) else t,
            name="t_%d" % i)
        if t is not None else t
        for i, t in enumerate(t_list)]
    half_squared_norms = []
    for v in values:
      if v is not None:
        with ops.colocate_with(v):
          half_squared_norms.append(gen_nn_ops.l2_loss(v))

    half_squared_norm = math_ops.reduce_sum(array_ops.stack(half_squared_norms))

    norm = math_ops.sqrt(
        half_squared_norm *
        constant_op.constant(2.0, dtype=half_squared_norm.dtype),
        name="global_norm")

  return norm


@tf_export("clip_by_global_norm")
def clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None):
  """Clips values of multiple tensors by the ratio of the sum of their norms.

  Given a tuple or list of tensors `t_list`, and a clipping ratio `clip_norm`,
  this operation returns a list of clipped tensors `list_clipped`
  and the global norm (`global_norm`) of all tensors in `t_list`. Optionally,
  if you've already computed the global norm for `t_list`, you can specify
  the global norm with `use_norm`.

  To perform the clipping, the values `t_list[i]` are set to:

      t_list[i] * clip_norm / max(global_norm, clip_norm)

  where:

      global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

  If `clip_norm > global_norm` then the entries in `t_list` remain as they are,
  otherwise they're all shrunk by the global ratio.

  Any of the entries of `t_list` that are of type `None` are ignored.

  This is the correct way to perform gradient clipping (for example, see
  [Pascanu et al., 2012](http://arxiv.org/abs/1211.5063)
  ([pdf](http://arxiv.org/pdf/1211.5063.pdf))).

  However, it is slower than `clip_by_norm()` because all the parameters must be
  ready before the clipping operation can be performed.

  Args:
    t_list: A tuple or list of mixed `Tensors`, `IndexedSlices`, or None.
    clip_norm: A 0-D (scalar) `Tensor` > 0. The clipping ratio.
    use_norm: A 0-D (scalar) `Tensor` of type `float` (optional). The global
      norm to use. If not provided, `global_norm()` is used to compute the norm.
    name: A name for the operation (optional).

  Returns:
    list_clipped: A list of `Tensors` of the same type as `list_t`.
    global_norm: A 0-D (scalar) `Tensor` representing the global norm.

  Raises:
    TypeError: If `t_list` is not a sequence.
    InvalidArgumentError: If global norm is not finite.
  """
  if (not isinstance(t_list, collections.Sequence)
      or isinstance(t_list, six.string_types)):
    raise TypeError("t_list should be a sequence")
  t_list = list(t_list)
  if use_norm is None:
    use_norm = global_norm(t_list, name)
  use_norm = numerics.verify_tensor_all_finite(use_norm,
                                               "Found Inf or NaN global norm.")

  with ops.name_scope(name, "clip_by_global_norm",
                      t_list + [clip_norm]) as name:
    # Calculate L2-norm, clip elements by ratio of clip_norm to L2-norm
    scale = clip_norm * math_ops.minimum(
        1.0 / use_norm,
        constant_op.constant(1.0, dtype=use_norm.dtype) / clip_norm)

    values = [
        ops.convert_to_tensor(
            t.values if isinstance(t, ops.IndexedSlices) else t,
            name="t_%d" % i)
        if t is not None else t
        for i, t in enumerate(t_list)]

    values_clipped = []
    for i, v in enumerate(values):
      if v is None:
        values_clipped.append(None)
      else:
        with ops.colocate_with(v):
          values_clipped.append(
              array_ops.identity(v * scale, name="%s_%d" % (name, i)))

    list_clipped = [
        ops.IndexedSlices(c_v, t.indices, t.dense_shape)
        if isinstance(t, ops.IndexedSlices)
        else c_v
        for (c_v, t) in zip(values_clipped, t_list)]

  return list_clipped, use_norm


@tf_export("clip_by_average_norm")
def clip_by_average_norm(t, clip_norm, name=None):
  """Clips tensor values to a maximum average L2-norm.

  Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
  normalizes `t` so that its average L2-norm is less than or equal to
  `clip_norm`. Specifically, if the average L2-norm is already less than or
  equal to `clip_norm`, then `t` is not modified. If the average L2-norm is
  greater than `clip_norm`, then this operation returns a tensor of the same
  type and shape as `t` with its values set to:

  `t * clip_norm / l2norm_avg(t)`

  In this case, the average L2-norm of the output tensor is `clip_norm`.

  This operation is typically used to clip gradients before applying them with
  an optimizer.

  Args:
    t: A `Tensor`.
    clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.
  """
  with ops.name_scope(name, "clip_by_average_norm", [t, clip_norm]) as name:
    t = ops.convert_to_tensor(t, name="t")

    # Calculate L2-norm per element, clip elements by ratio of clip_norm to
    # L2-norm per element
    n_element = math_ops.cast(array_ops.size(t), dtypes.float32)
    l2norm_inv = math_ops.rsqrt(
        math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
    tclip = array_ops.identity(
        t * clip_norm * math_ops.minimum(
            l2norm_inv * n_element, constant_op.constant(1.0) / clip_norm),
        name=name)

  return tclip