aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/svd_op_test.py
blob: fd49e1a6cc4057565712cccbea7ab54c135aebef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.math_ops.matrix_inverse."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import constant_op
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test


class SvdOpTest(test.TestCase):

  def testWrongDimensions(self):
    # The input to svd should be a tensor of at least rank 2.
    scalar = constant_op.constant(1.)
    with self.assertRaisesRegexp(ValueError,
                                 "Shape must be at least rank 2 but is rank 0"):
      linalg_ops.svd(scalar)
    vector = constant_op.constant([1., 2.])
    with self.assertRaisesRegexp(ValueError,
                                 "Shape must be at least rank 2 but is rank 1"):
      linalg_ops.svd(vector)


def _GetSvdOpTest(dtype_, shape_, use_static_shape_):

  is_complex = dtype_ in (np.complex64, np.complex128)
  is_single = dtype_ in (np.float32, np.complex64)

  def CompareSingularValues(self, x, y):
    if is_single:
      tol = 5e-5
    else:
      tol = 1e-14
    self.assertAllClose(x, y, atol=(x[0] + y[0]) * tol)

  def CompareSingularVectors(self, x, y, rank):
    if is_single:
      atol = 5e-4
    else:
      atol = 5e-14
    # We only compare the first 'rank' singular vectors since the
    # remainder form an arbitrary orthonormal basis for the
    # (row- or column-) null space, whose exact value depends on
    # implementation details. Notice that since we check that the
    # matrices of singular vectors are unitary elsewhere, we do
    # implicitly test that the trailing vectors of x and y span the
    # same space.
    x = x[..., 0:rank]
    y = y[..., 0:rank]
    # Singular vectors are only unique up to sign (complex phase factor for
    # complex matrices), so we normalize the sign first.
    sum_of_ratios = np.sum(np.divide(y, x), -2, keepdims=True)
    phases = np.divide(sum_of_ratios, np.abs(sum_of_ratios))
    x *= phases
    self.assertAllClose(x, y, atol=atol)

  def CheckApproximation(self, a, u, s, v, full_matrices):
    if is_single:
      tol = 1e-5
    else:
      tol = 1e-14
    # Tests that a ~= u*diag(s)*transpose(v).
    batch_shape = a.shape[:-2]
    m = a.shape[-2]
    n = a.shape[-1]
    diag_s = math_ops.cast(array_ops.matrix_diag(s), dtype=dtype_)
    if full_matrices:
      if m > n:
        zeros = array_ops.zeros(batch_shape + (m - n, n), dtype=dtype_)
        diag_s = array_ops.concat([diag_s, zeros], a.ndim - 2)
      elif n > m:
        zeros = array_ops.zeros(batch_shape + (m, n - m), dtype=dtype_)
        diag_s = array_ops.concat([diag_s, zeros], a.ndim - 1)
    a_recon = math_ops.matmul(u, diag_s)
    a_recon = math_ops.matmul(a_recon, v, adjoint_b=True)
    self.assertAllClose(a_recon.eval(), a, rtol=tol, atol=tol)

  def CheckUnitary(self, x):
    # Tests that x[...,:,:]^H * x[...,:,:] is close to the identity.
    xx = math_ops.matmul(x, x, adjoint_a=True)
    identity = array_ops.matrix_band_part(array_ops.ones_like(xx), 0, 0)
    if is_single:
      tol = 1e-5
    else:
      tol = 1e-14
    self.assertAllClose(identity.eval(), xx.eval(), atol=tol)

  def Test(self):
    np.random.seed(1)
    x_np = np.random.uniform(
        low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_)
    if is_complex:
      x_np += 1j * np.random.uniform(
          low=-1.0, high=1.0,
          size=np.prod(shape_)).reshape(shape_).astype(dtype_)

    for compute_uv in False, True:
      for full_matrices in False, True:
        with self.test_session() as sess:
          if use_static_shape_:
            x_tf = constant_op.constant(x_np)
          else:
            x_tf = array_ops.placeholder(dtype_)

          if compute_uv:
            s_tf, u_tf, v_tf = linalg_ops.svd(x_tf,
                                              compute_uv=compute_uv,
                                              full_matrices=full_matrices)
            if use_static_shape_:
              s_tf_val, u_tf_val, v_tf_val = sess.run([s_tf, u_tf, v_tf])
            else:
              s_tf_val, u_tf_val, v_tf_val = sess.run([s_tf, u_tf, v_tf],
                                                      feed_dict={x_tf: x_np})
          else:
            s_tf = linalg_ops.svd(x_tf,
                                  compute_uv=compute_uv,
                                  full_matrices=full_matrices)
            if use_static_shape_:
              s_tf_val = sess.run(s_tf)
            else:
              s_tf_val = sess.run(s_tf, feed_dict={x_tf: x_np})

          if compute_uv:
            u_np, s_np, v_np = np.linalg.svd(x_np,
                                             compute_uv=compute_uv,
                                             full_matrices=full_matrices)
          else:
            s_np = np.linalg.svd(x_np,
                                 compute_uv=compute_uv,
                                 full_matrices=full_matrices)
          # We explicitly avoid the situation where numpy eliminates a first
          # dimension that is equal to one
          s_np = np.reshape(s_np, s_tf_val.shape)

          CompareSingularValues(self, s_np, s_tf_val)
          if compute_uv:
            CompareSingularVectors(self, u_np, u_tf_val, min(shape_[-2:]))
            CompareSingularVectors(self,
                                   np.conj(np.swapaxes(v_np, -2, -1)), v_tf_val,
                                   min(shape_[-2:]))
            CheckApproximation(self, x_np, u_tf_val, s_tf_val, v_tf_val,
                               full_matrices)
            CheckUnitary(self, u_tf_val)
            CheckUnitary(self, v_tf_val)

  return Test


if __name__ == "__main__":
  for dtype in np.float32, np.float64, np.complex64, np.complex128:
    for rows in 1, 2, 5, 10, 32, 100:
      for cols in 1, 2, 5, 10, 32, 100:
        for batch_dims in [(), (3,)] + [(3, 2)] * (max(rows, cols) < 10):
          shape = batch_dims + (rows, cols)
          for use_static_shape in True, False:
            name = "%s_%s_%s" % (dtype.__name__, "_".join(map(str, shape)),
                                 use_static_shape)
            setattr(SvdOpTest, "testSvd_" + name,
                    _GetSvdOpTest(dtype, shape, use_static_shape))
  test.main()