aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/spacetodepth_op_test.py
blob: cd90d16aacb4325ed426b0466266d9616b574401 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for SpacetoDepth op."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging


class SpaceToDepthTest(test.TestCase):

  def _testOne(self, inputs, block_size, outputs, dtype=dtypes.float32):
    input_nhwc = math_ops.cast(inputs, dtype)
    with self.test_session(use_gpu=False):
      # test NHWC (default) on CPU
      x_tf = array_ops.space_to_depth(input_nhwc, block_size)
      self.assertAllEqual(x_tf.eval(), outputs)
    if test.is_gpu_available():
      with self.test_session(use_gpu=True):
        # test NHWC (default) on GPU
        x_tf = array_ops.space_to_depth(input_nhwc, block_size)
        self.assertAllEqual(x_tf.eval(), outputs)
        # test NCHW on GPU
        input_nchw = test_util.NHWCToNCHW(input_nhwc)
        output_nchw = array_ops.space_to_depth(
            input_nchw, block_size, data_format="NCHW")
        output_nhwc = test_util.NCHWToNHWC(output_nchw)
        self.assertAllEqual(output_nhwc.eval(), outputs)

  def testBasic(self):
    x_np = [[[[1], [2]], [[3], [4]]]]
    block_size = 2
    x_out = [[[[1, 2, 3, 4]]]]
    self._testOne(x_np, block_size, x_out)

  def testBasicFloat16(self):
    x_np = [[[[1], [2]], [[3], [4]]]]
    block_size = 2
    x_out = [[[[1, 2, 3, 4]]]]
    self._testOne(x_np, block_size, x_out, dtype=dtypes.float16)

  # Tests for larger input dimensions. To make sure elements are
  # correctly ordered spatially.
  def testLargerInput2x2(self):
    x_np = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
             [[9], [10], [13], [14]], [[11], [12], [15], [16]]]]
    block_size = 2
    x_out = [[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12],
                                             [13, 14, 15, 16]]]]
    self._testOne(x_np, block_size, x_out)

  # Tests for larger input dimensions. To make sure elements are
  # correctly ordered in depth. Here, larger block size.
  def testLargerInput4x4(self):
    x_np = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
             [[9], [10], [13], [14]], [[11], [12], [15], [16]]]]
    block_size = 4
    x_out = [[[[1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]]]]
    self._testOne(x_np, block_size, x_out)

  # Tests for larger input depths.
  # To make sure elements are properly interleaved in depth.
  def testDepthInterleaved(self):
    x_np = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]]]]
    block_size = 2
    x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40]]]]
    self._testOne(x_np, block_size, x_out)

  # Tests for larger input depths. Here an odd depth.
  # To make sure elements are properly interleaved in depth.
  def testDepthInterleavedDepth3(self):
    x_np = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]]
    block_size = 2
    x_out = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]
    self._testOne(x_np, block_size, x_out)

  # Tests for larger input dimensions AND for larger input depths.
  # To make sure elements are properly interleaved in depth and ordered
  # spatially.
  def testDepthInterleavedLarge(self):
    x_np = [[[[1, 10], [2, 20], [5, 50], [6, 60]],
             [[3, 30], [4, 40], [7, 70], [8, 80]],
             [[9, 90], [10, 100], [13, 130], [14, 140]],
             [[11, 110], [12, 120], [15, 150], [16, 160]]]]
    block_size = 2
    x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40], [5, 50, 6, 60, 7, 70, 8, 80]],
              [[9, 90, 10, 100, 11, 110, 12, 120],
               [13, 130, 14, 140, 15, 150, 16, 160]]]]
    self._testOne(x_np, block_size, x_out)

  def testBlockSize2Batch10(self):
    block_size = 2

    def batch_input_elt(i):
      return [[[1 * i], [2 * i], [5 * i], [6 * i]],
              [[3 * i], [4 * i], [7 * i], [8 * i]],
              [[9 * i], [10 * i], [13 * i], [14 * i]],
              [[11 * i], [12 * i], [15 * i], [16 * i]]]

    def batch_output_elt(i):
      return [[[1 * i, 2 * i, 3 * i, 4 * i], [5 * i, 6 * i, 7 * i, 8 * i]],
              [[9 * i, 10 * i, 11 * i, 12 * i],
               [13 * i, 14 * i, 15 * i, 16 * i]]]

    batch_size = 10
    x_np = [batch_input_elt(i) for i in range(batch_size)]
    x_out = [batch_output_elt(i) for i in range(batch_size)]
    self._testOne(x_np, block_size, x_out)

  def testBatchSize0(self):
    block_size = 2
    batch_size = 0
    input_nhwc = array_ops.ones([batch_size, 4, 6, 3])
    x_out = array_ops.ones([batch_size, 2, 3, 12])

    with self.test_session(use_gpu=False):
      # test NHWC (default) on CPU
      x_tf = array_ops.space_to_depth(input_nhwc, block_size)
      self.assertAllEqual(x_tf.shape, x_out.shape)
      x_tf.eval()
    if test.is_gpu_available():
      with self.test_session(use_gpu=True):
        # test NHWC (default) on GPU
        x_tf = array_ops.space_to_depth(input_nhwc, block_size)
        self.assertAllEqual(x_tf.shape, x_out.shape)
        x_tf.eval()

  # Tests for different width and height.
  def testNonSquare(self):
    x_np = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]], [[5, 50], [6, 60]],
             [[7, 70], [8, 80]], [[9, 90], [10, 100]], [[11, 110], [12, 120]]]]
    block_size = 2
    x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40]], [[5, 50, 6, 60, 7, 70, 8, 80]],
              [[9, 90, 10, 100, 11, 110, 12, 120]]]]
    self._testOne(x_np, block_size, x_out)

  # Error handling:

  def testInputWrongDimMissingDepth(self):
    # The input is missing the last dimension ("depth")
    x_np = [[[1, 2], [3, 4]]]
    block_size = 2
    with self.assertRaises(ValueError):
      out_tf = array_ops.space_to_depth(x_np, block_size)
      out_tf.eval()

  def testInputWrongDimMissingBatch(self):
    # The input is missing the first dimension ("batch")
    x_np = [[[1], [2]], [[3], [4]]]
    block_size = 2
    with self.assertRaises(ValueError):
      _ = array_ops.space_to_depth(x_np, block_size)

  def testBlockSize0(self):
    # The block size is 0.
    x_np = [[[[1], [2]], [[3], [4]]]]
    block_size = 0
    with self.assertRaises(ValueError):
      out_tf = array_ops.space_to_depth(x_np, block_size)
      out_tf.eval()

  def testBlockSizeOne(self):
    # The block size is 1. The block size needs to be > 1.
    x_np = [[[[1], [2]], [[3], [4]]]]
    block_size = 1
    with self.assertRaises(ValueError):
      out_tf = array_ops.space_to_depth(x_np, block_size)
      out_tf.eval()

  def testBlockSizeLarger(self):
    # The block size is too large for this input.
    x_np = [[[[1], [2]], [[3], [4]]]]
    block_size = 10
    with self.assertRaises(ValueError):
      out_tf = array_ops.space_to_depth(x_np, block_size)
      out_tf.eval()

  def testBlockSizeNotDivisibleWidth(self):
    # The block size divides width but not height.
    x_np = [[[[1], [2], [3]], [[3], [4], [7]]]]
    block_size = 3
    with self.assertRaises(ValueError):
      _ = array_ops.space_to_depth(x_np, block_size)

  def testBlockSizeNotDivisibleHeight(self):
    # The block size divides height but not width.
    x_np = [[[[1], [2]], [[3], [4]], [[5], [6]]]]
    block_size = 3
    with self.assertRaises(ValueError):
      _ = array_ops.space_to_depth(x_np, block_size)

  def testBlockSizeNotDivisibleBoth(self):
    # The block size does not divide neither width or height.
    x_np = [[[[1], [2]], [[3], [4]]]]
    block_size = 3
    with self.assertRaises(ValueError):
      _ = array_ops.space_to_depth(x_np, block_size)

  def testUnknownShape(self):
    t = array_ops.space_to_depth(
        array_ops.placeholder(dtypes.float32), block_size=4)
    self.assertEqual(4, t.get_shape().ndims)

  def spaceToDepthUsingTranspose(self, tensor, block_size, data_format):
    block_size_sq = block_size * block_size
    if data_format == "NHWC":
      b, ih, iw, ic = tensor.shape.as_list()
      assert ih % block_size == 0, (ih, block_size)
      assert iw % block_size == 0, (iw, block_size)
      ow, oh, oc = iw // block_size, ih // block_size, ic * block_size_sq
      tensor = array_ops.reshape(tensor,
                                 [b, oh, block_size, ow, block_size, ic])
      tensor = array_ops.transpose(tensor, [0, 1, 3, 2, 4, 5])
      tensor = array_ops.reshape(tensor, [b, oh, ow, oc])
    elif data_format == "NCHW":
      b, ic, ih, iw = tensor.shape.as_list()
      assert ih % block_size == 0, (ih, block_size)
      assert iw % block_size == 0, (iw, block_size)
      ow, oh, oc = iw // block_size, ih // block_size, ic * block_size_sq
      tensor = array_ops.reshape(tensor,
                                 [b, ic, oh, block_size, ow, block_size])
      tensor = array_ops.transpose(tensor, [0, 3, 5, 1, 2, 4])
      tensor = array_ops.reshape(tensor, [b, oc, oh, ow])
    return tensor

  def compareToTranspose(self, batch_size, out_height, out_width, in_channels,
                         block_size, data_format, use_gpu):
    in_height = out_height * block_size
    in_width = out_width * block_size
    nhwc_input_shape = [batch_size, in_height, in_width, in_channels]
    nchw_input_shape = [batch_size, in_channels, in_height, in_width]
    total_size = np.prod(nhwc_input_shape)

    if data_format == "NCHW_VECT_C":
      # Initialize the input tensor with qint8 values that circle -127..127.
      x = [((f + 128) % 255) - 127 for f in range(total_size)]
      t = constant_op.constant(x, shape=nhwc_input_shape, dtype=dtypes.float32)
      expected = self.spaceToDepthUsingTranspose(t, block_size, "NHWC")
      t = test_util.NHWCToNCHW_VECT_C(t)
      t, _, _ = gen_array_ops.quantize_v2(t, -128.0, 127.0, dtypes.qint8)
      t = array_ops.space_to_depth(t, block_size, data_format="NCHW_VECT_C")
      t = gen_array_ops.dequantize(t, -128, 127)
      actual = test_util.NCHW_VECT_CToNHWC(t)
    else:
      # Initialize the input tensor with ascending whole numbers as floats.
      x = [f * 1.0 for f in range(total_size)]
      shape = nchw_input_shape if data_format == "NCHW" else nhwc_input_shape
      t = constant_op.constant(x, shape=shape, dtype=dtypes.float32)
      expected = self.spaceToDepthUsingTranspose(t, block_size, data_format)
      actual = array_ops.space_to_depth(t, block_size, data_format=data_format)

    with self.test_session(use_gpu=use_gpu) as sess:
      actual_vals, expected_vals = sess.run([actual, expected])
      self.assertTrue(np.array_equal(actual_vals, expected_vals))

  def testAgainstTranspose(self):
    self.compareToTranspose(3, 2, 3, 1, 2, "NHWC", False)
    self.compareToTranspose(1, 2, 3, 2, 2, "NHWC", False)
    self.compareToTranspose(1, 2, 3, 2, 3, "NHWC", False)

    if not test.is_gpu_available():
      tf_logging.info("skipping gpu tests since gpu not available")
      return

    self.compareToTranspose(3, 2, 3, 1, 2, "NHWC", True)
    self.compareToTranspose(3, 2, 3, 2, 2, "NHWC", True)
    self.compareToTranspose(3, 2, 3, 1, 2, "NCHW", True)
    self.compareToTranspose(3, 2, 3, 2, 3, "NCHW", True)
    self.compareToTranspose(5, 7, 11, 3, 2, "NCHW", True)

    self.compareToTranspose(3, 2, 3, 4, 2, "NCHW_VECT_C", True)
    self.compareToTranspose(3, 2, 3, 8, 3, "NCHW_VECT_C", True)
    self.compareToTranspose(5, 7, 11, 12, 2, "NCHW_VECT_C", True)


class SpaceToDepthGradientTest(test.TestCase):

  # Check the gradients.
  def _checkGrad(self, x, block_size, data_format):
    # NCHW is implemented for only GPU.
    if data_format == "NCHW" and not test.is_gpu_available():
      return

    assert 4 == x.ndim
    with self.test_session(use_gpu=True):
      tf_x = ops.convert_to_tensor(x)
      tf_y = array_ops.space_to_depth(tf_x, block_size, data_format=data_format)
      epsilon = 1e-2
      ((x_jacob_t, x_jacob_n)) = gradient_checker.compute_gradient(
          tf_x,
          x.shape,
          tf_y,
          tf_y.get_shape().as_list(),
          x_init_value=x,
          delta=epsilon)

    self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)

  # Tests a gradient for space_to_depth of x which is a four dimensional
  # tensor of shape [b, h * block_size, w * block_size, d].
  def _compare(self, b, h, w, d, block_size, data_format):
    block_size_sq = block_size * block_size
    data = np.random.normal(0, 1, b * h * w * d * block_size_sq).astype(
        np.float32)
    if data_format == "NHWC":
      x = data.reshape([b, h * block_size, w * block_size, d])
    else:
      x = data.reshape([b, d, h * block_size, w * block_size])

    self._checkGrad(x, block_size, data_format)

  # Don't use very large numbers as dimensions here as the result is tensor
  # with cartesian product of the dimensions.
  def testSmall(self):
    block_size = 2
    self._compare(1, 2, 3, 5, block_size, "NHWC")
    self._compare(1, 2, 3, 5, block_size, "NCHW")

  def testSmall2(self):
    block_size = 2
    self._compare(2, 4, 3, 2, block_size, "NHWC")
    self._compare(2, 4, 3, 2, block_size, "NCHW")


if __name__ == "__main__":
  test.main()