aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/slice_op_test.py
blob: 051a25080b826de05ee3e24a82fbcd1f47995544 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for slice op."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin

from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradients_impl
from tensorflow.python.platform import test


class SliceTest(test.TestCase):

  def testEmpty(self):
    inp = np.random.rand(4, 4).astype("f")
    for k in xrange(4):
      with self.test_session(use_gpu=True):
        a = constant_op.constant(inp, shape=[4, 4], dtype=dtypes.float32)
        slice_t = a[2, k:k]
        slice_val = slice_t.eval()
      self.assertAllEqual(slice_val, inp[2, k:k])

  def testInt32(self):
    inp = np.random.rand(4, 4).astype("i")
    for k in xrange(4):
      with self.test_session(use_gpu=True):
        a = constant_op.constant(inp, shape=[4, 4], dtype=dtypes.int32)
        slice_t = a[2, k:k]
        slice_val = slice_t.eval()
      self.assertAllEqual(slice_val, inp[2, k:k])

  def testInt64Slicing(self):
    with self.test_session(use_gpu=True):
      a = constant_op.constant([0, 1, 2], dtype=dtypes.int64)

      # Slice using int64 Tensor.
      i = constant_op.constant(1, dtype=dtypes.int64)
      slice_t = a[i]
      slice_val = slice_t.eval()
      self.assertAllEqual(1, slice_val)
      slice_t = a[i:i+1]
      slice_val = slice_t.eval()
      self.assertAllEqual([1], slice_val)

      # Slice using int64 integer.
      i = np.asarray(1).astype(np.int64)
      slice_t = a[i]
      slice_val = slice_t.eval()
      self.assertAllEqual(1, slice_val)
      slice_t = a[i:i+1]
      slice_val = slice_t.eval()
      self.assertAllEqual([1], slice_val)

  def testSelectAll(self):
    for _ in range(10):
      with self.test_session(use_gpu=True):
        inp = np.random.rand(4, 4, 4, 4).astype("f")
        a = constant_op.constant(inp, shape=[4, 4, 4, 4], dtype=dtypes.float32)

        slice_explicit_t = array_ops.slice(a, [0, 0, 0, 0], [-1, -1, -1, -1])
        slice_implicit_t = a[:, :, :, :]

        self.assertAllEqual(inp, slice_explicit_t.eval())
        self.assertAllEqual(inp, slice_implicit_t.eval())
        self.assertEqual(inp.shape, slice_explicit_t.get_shape())
        self.assertEqual(inp.shape, slice_implicit_t.get_shape())

  def testSingleDimension(self):
    for _ in range(10):
      with self.test_session(use_gpu=True):
        inp = np.random.rand(10).astype("f")
        a = constant_op.constant(inp, shape=[10], dtype=dtypes.float32)

        hi = np.random.randint(0, 9)
        scalar_t = a[hi]
        scalar_val = scalar_t.eval()
        self.assertAllEqual(scalar_val, inp[hi])

        if hi > 0:
          lo = np.random.randint(0, hi)
        else:
          lo = 0
        slice_t = a[lo:hi]
        slice_val = slice_t.eval()
        self.assertAllEqual(slice_val, inp[lo:hi])

  def testScalarInput(self):
    input_val = 0
    with self.test_session() as sess:
      # Test with constant input; shape inference fails.
      with self.assertRaisesWithPredicateMatch(ValueError, "out of range"):
        constant_op.constant(input_val)[:].get_shape()

      # Test evaluating with non-constant input; kernel execution fails.
      input_t = array_ops.placeholder(dtypes.int32)
      slice_t = input_t[:]
      with self.assertRaisesWithPredicateMatch(errors_impl.InvalidArgumentError,
                                               "out of range"):
        sess.run([slice_t], feed_dict={input_t: input_val})

  def testInvalidIndex(self):
    input_val = [1, 2]
    with self.test_session() as sess:
      # Test with constant input; shape inference fails.
      with self.assertRaisesWithPredicateMatch(ValueError, "out of range"):
        constant_op.constant(input_val)[1:, 1:].get_shape()

      # Test evaluating with non-constant input; kernel execution fails.
      input_t = array_ops.placeholder(dtypes.int32)
      slice_t = input_t[1:, 1:]
      with self.assertRaisesWithPredicateMatch(errors_impl.InvalidArgumentError,
                                               "out of range"):
        sess.run([slice_t], feed_dict={input_t: input_val})

  def _testSliceMatrixDim0(self, x, begin, size):
    with self.test_session(use_gpu=True):
      tf_ans = array_ops.slice(x, [begin, 0], [size, x.shape[1]]).eval()
    np_ans = x[begin:begin + size, :]
    self.assertAllEqual(tf_ans, np_ans)

  def testSliceMatrixDim0(self):
    x = np.random.rand(8, 4).astype("f")
    self._testSliceMatrixDim0(x, 1, 2)
    self._testSliceMatrixDim0(x, 3, 3)
    y = np.random.rand(8, 7).astype("f")  # 7 * sizeof(float) is not aligned
    self._testSliceMatrixDim0(y, 1, 2)
    self._testSliceMatrixDim0(y, 3, 3)

  def testSingleElementAll(self):
    for _ in range(10):
      with self.test_session(use_gpu=True):
        inp = np.random.rand(4, 4).astype("f")
        a = constant_op.constant(inp, shape=[4, 4], dtype=dtypes.float32)

        x, y = np.random.randint(0, 3, size=2).tolist()
        slice_t = a[x, 0:y]
        slice_val = slice_t.eval()
      self.assertAllEqual(slice_val, inp[x, 0:y])

  def testSimple(self):
    with self.test_session(use_gpu=True) as sess:
      inp = np.random.rand(4, 4).astype("f")
      a = constant_op.constant(
          [float(x) for x in inp.ravel(order="C")],
          shape=[4, 4],
          dtype=dtypes.float32)
      slice_t = array_ops.slice(a, [0, 0], [2, 2])
      slice2_t = a[:2, :2]
      slice_val, slice2_val = sess.run([slice_t, slice2_t])
    self.assertAllEqual(slice_val, inp[:2, :2])
    self.assertAllEqual(slice2_val, inp[:2, :2])
    self.assertEqual(slice_val.shape, slice_t.get_shape())
    self.assertEqual(slice2_val.shape, slice2_t.get_shape())

  def testComplex(self):
    with self.test_session(use_gpu=True):
      inp = np.random.rand(4, 10, 10, 4).astype("f")
      a = constant_op.constant(inp, dtype=dtypes.float32)

      x = np.random.randint(0, 9)
      z = np.random.randint(0, 9)
      if z > 0:
        y = np.random.randint(0, z)
      else:
        y = 0
      slice_t = a[:, x, y:z, :]
      self.assertAllEqual(slice_t.eval(), inp[:, x, y:z, :])

  def testRandom(self):
    # Random dims of rank 6
    input_shape = np.random.randint(0, 20, size=6)
    inp = np.random.rand(*input_shape).astype("f")
    with self.test_session(use_gpu=True) as sess:
      a = constant_op.constant(
          [float(x) for x in inp.ravel(order="C")],
          shape=input_shape,
          dtype=dtypes.float32)
      indices = [0 if x == 0 else np.random.randint(x) for x in input_shape]
      sizes = [
          np.random.randint(0, input_shape[i] - indices[i] + 1)
          for i in range(6)
      ]
      slice_t = array_ops.slice(a, indices, sizes)
      slice2_t = a[indices[0]:indices[0] + sizes[0], indices[1]:indices[
          1] + sizes[1], indices[2]:indices[2] + sizes[2], indices[3]:indices[3]
                   + sizes[3], indices[4]:indices[4] + sizes[4], indices[5]:
                   indices[5] + sizes[5]]

      slice_val, slice2_val = sess.run([slice_t, slice2_t])

    expected_val = inp[indices[0]:indices[0] + sizes[0], indices[1]:indices[
        1] + sizes[1], indices[2]:indices[2] + sizes[2], indices[3]:indices[
            3] + sizes[3], indices[4]:indices[4] + sizes[4], indices[5]:indices[
                5] + sizes[5]]
    self.assertAllEqual(slice_val, expected_val)
    self.assertAllEqual(slice2_val, expected_val)
    self.assertEqual(expected_val.shape, slice_t.get_shape())
    self.assertEqual(expected_val.shape, slice2_t.get_shape())

  def testPartialShapeInference(self):
    z = array_ops.zeros((1, 2, 3))
    self.assertAllEqual(z.get_shape().as_list(), [1, 2, 3])

    m1 = array_ops.slice(z, [0, 0, 0], [-1, -1, -1])
    self.assertAllEqual(m1.get_shape().as_list(), [1, 2, 3])

    m2 = array_ops.slice(z, [0, 0, 0], [constant_op.constant(1) + 0, 2, -1])
    self.assertAllEqual(m2.get_shape().as_list(), [None, 2, None])


  def _testGradientSlice(self, input_shape, slice_begin, slice_size):
    with self.test_session(use_gpu=True):
      num_inputs = np.prod(input_shape)
      num_grads = np.prod(slice_size)
      inp = np.random.rand(num_inputs).astype("f").reshape(input_shape)
      a = constant_op.constant(
          [float(x) for x in inp.ravel(order="C")],
          shape=input_shape,
          dtype=dtypes.float32)
      slice_t = array_ops.slice(a, slice_begin, slice_size)
      grads = np.random.rand(num_grads).astype("f").reshape(slice_size)
      grad_tensor = constant_op.constant(grads)
      grad = gradients_impl.gradients(slice_t, [a], grad_tensor)[0]
      result = grad.eval()

    # Create a zero tensor of the input shape ane place
    # the grads into the right location to compare against TensorFlow.
    np_ans = np.zeros(input_shape)
    slices = []
    for i in xrange(len(input_shape)):
      slices.append(slice(slice_begin[i], slice_begin[i] + slice_size[i]))
    np_ans[slices] = grads

    self.assertAllClose(np_ans, result)

  def _testGradientVariableSize(self):
    with self.test_session(use_gpu=True):
      inp = constant_op.constant([1.0, 2.0, 3.0], name="in")
      out = array_ops.slice(inp, [1], [-1])
      grad_actual = gradients_impl.gradients(out, inp)[0].eval()
    self.assertAllClose([0., 1., 1.], grad_actual)

  def testGradientsAll(self):
    # Slice the middle square out of a 4x4 input
    self._testGradientSlice([4, 4], [1, 1], [2, 2])

    # Slice the upper left square out of a 4x4 input
    self._testGradientSlice([4, 4], [0, 0], [2, 2])

    # Slice a non-square input starting from (2,1)
    self._testGradientSlice([4, 4], [2, 1], [1, 2])

    # Slice a 3D tensor
    self._testGradientSlice([3, 3, 3], [0, 1, 0], [2, 1, 1])

    # Use -1 as a slice dimension.
    self._testGradientVariableSize()

  def testNotIterable(self):
    # NOTE(mrry): If we register __getitem__ as an overloaded
    # operator, Python will valiantly attempt to iterate over the
    # Tensor from 0 to infinity.  This test ensures that this
    # unintended behavior is prevented.
    c = constant_op.constant(5.0)
    with self.assertRaisesWithPredicateMatch(
        TypeError, lambda e: "`Tensor` objects are not iterable" in str(e)):
      for _ in c:
        pass

  def testComputedShape(self):
    # NOTE(mrry): We cannot currently handle partially-known values,
    # because `tf.slice()` uses -1 to specify a wildcard size, and
    # this can't be handled using the
    # `tensor_util.constant_value_as_shape()` trick.
    a = constant_op.constant([[1, 2, 3], [4, 5, 6]])
    begin = constant_op.constant(0)
    size = constant_op.constant(1)
    b = array_ops.slice(a, [begin, 0], [size, 2])
    self.assertEqual([1, 2], b.get_shape())

    begin = array_ops.placeholder(dtypes.int32, shape=())
    c = array_ops.slice(a, [begin, 0], [-1, 2])
    self.assertEqual([None, 2], c.get_shape().as_list())

  def testSliceOfSlice(self):
    with self.test_session(use_gpu=True):
      a = constant_op.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
      b = a[1:, :]
      c = b[:-1, :]
      d = c[1, :]
      res = 2 * d - c[1, :] + a[2, :] - 2 * b[-2, :]
      self.assertAllEqual([0, 0, 0], res.eval())


if __name__ == "__main__":
  test.main()