aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/random/random_ops_test.py
blob: e4b5c3832a2252aedc8820a650b022cd30b7f285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.random_ops."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin

from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test


class RandomNormalTest(test.TestCase):

  def _Sampler(self, num, mu, sigma, dtype, use_gpu, seed=None):

    def func():
      with self.test_session(use_gpu=use_gpu, graph=ops.Graph()) as sess:
        rng = random_ops.random_normal(
            [num], mean=mu, stddev=sigma, dtype=dtype, seed=seed)
        ret = np.empty([10, num])
        for i in xrange(10):
          ret[i, :] = sess.run(rng)
      return ret

    return func

  # Asserts that different trials (1000 samples per trial) is unlikely
  # to see the same sequence of values. Will catch buggy
  # implementations which uses the same random number seed.
  def testDistinct(self):
    for dt in dtypes.float16, dtypes.float32, dtypes.float64:
      sampler = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=True)
      x = sampler()
      y = sampler()
      # Number of different samples.
      count = (x == y).sum()
      if count >= 10:
        print("x = ", x)
        print("y = ", y)
        print("count = ", count)
      self.assertTrue(count < 10)

  # Checks that the CPU and GPU implementation returns the same results,
  # given the same random seed
  def testCPUGPUMatch(self):
    for dt in dtypes.float16, dtypes.float32, dtypes.float64:
      results = {}
      for use_gpu in [False, True]:
        sampler = self._Sampler(
            1000000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=12345)
        results[use_gpu] = sampler()
      if dt == dtypes.float16:
        self.assertAllClose(results[False], results[True], rtol=1e-3, atol=1e-3)
      else:
        self.assertAllClose(results[False], results[True], rtol=1e-6, atol=1e-6)

  def testSeed(self):
    for dt in dtypes.float16, dtypes.float32, dtypes.float64:
      sx = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=True, seed=345)
      sy = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=True, seed=345)
      self.assertAllEqual(sx(), sy())

  def testNoCSE(self):
    for use_gpu in [False, True]:
      with self.test_session(use_gpu=use_gpu):
        shape = [2, 3, 4]
        rnd1 = random_ops.random_normal(shape, 0.0, 1.0, dtypes.float32)
        rnd2 = random_ops.random_normal(shape, 0.0, 1.0, dtypes.float32)
        diff = rnd2 - rnd1
        self.assertTrue(np.linalg.norm(diff.eval()) > 0.1)


class TruncatedNormalTest(test.TestCase):

  def _Sampler(self, num, mu, sigma, dtype, use_gpu, seed=None):

    def func():
      with self.test_session(use_gpu=use_gpu, graph=ops.Graph()) as sess:
        rng = random_ops.truncated_normal(
            [num], mean=mu, stddev=sigma, dtype=dtype, seed=seed)
        ret = np.empty([10, num])
        for i in xrange(10):
          ret[i, :] = sess.run(rng)
      return ret

    return func

  # Asserts that different trials (1000 samples per trial) is unlikely
  # to see the same sequence of values. Will catch buggy
  # implementations which uses the same random number seed.
  def testDistinct(self):
    # NOTE: TruncatedNormal on GPU is not supported.
    if not test.is_gpu_available():
      for dt in dtypes.float16, dtypes.float32, dtypes.float64:
        sampler = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=False)
        x = sampler()
        y = sampler()
        # Number of different samples.
        count = (x == y).sum()
        if count >= 10:
          print("x = ", x)
          print("y = ", y)
          print("count = ", count)
        self.assertTrue(count < 10)

  # Checks that the CPU and GPU implementation returns the same results,
  # given the same random seed
  def testCPUGPUMatch(self):
    # Skip the test if there is no GPU.
    if not test.is_gpu_available():
      return

    for dt in dtypes.float16, dtypes.float32, dtypes.float64:
      results = {}
      for use_gpu in [False, True]:
        # We need a particular larger number of samples to test multiple rounds
        # on GPU
        sampler = self._Sampler(
            1000000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=12345)
        results[use_gpu] = sampler()
      if dt == dtypes.float16:
        self.assertAllClose(results[False], results[True], rtol=1e-3, atol=1e-3)
      else:
        self.assertAllClose(results[False], results[True], rtol=1e-6, atol=1e-6)

  def testSeed(self):
    for dt in dtypes.float16, dtypes.float32, dtypes.float64:
      sx = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=True, seed=345)
      sy = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=True, seed=345)
      self.assertAllEqual(sx(), sy())

  # The effective standard deviation of truncated normal is 85% of the
  # requested one.
  def testStdDev(self):
    for dt in dtypes.float16, dtypes.float32, dtypes.float64:
      stddev = 3.0
      sampler = self._Sampler(100000, 0.0, stddev, dt, use_gpu=True)
      x = sampler()
      print("std(x)", np.std(x), abs(np.std(x) / stddev - 0.85))
      self.assertTrue(abs(np.std(x) / stddev - 0.85) < 0.04)

  def testLargeShape(self):
    with self.test_session(use_gpu=True):
      v = variables.Variable(
          array_ops.zeros(dtype=dtypes.float32, shape=[2**33, 1]))
      n = random_ops.truncated_normal(v.shape)
      self.assertEqual([8589934592, 1], n.shape.as_list())

  def testNoCSE(self):
    with self.test_session(use_gpu=True):
      shape = [2, 3, 4]
      rnd1 = random_ops.truncated_normal(shape, 0.0, 1.0, dtypes.float32)
      rnd2 = random_ops.truncated_normal(shape, 0.0, 1.0, dtypes.float32)
      diff = rnd2 - rnd1
      self.assertTrue(np.linalg.norm(diff.eval()) > 0.1)

  def testEagerSeed(self):
    with context.eager_mode():
      # Ensure a context has been created
      random_ops.random_normal([])
      # Set the same seed twice and check that the values match
      context.set_global_seed(42)
      rnd1 = random_ops.random_normal([])
      context.set_global_seed(42)
      rnd2 = random_ops.random_normal([])
      self.assertAllEqual(rnd1, rnd2)


class RandomUniformTest(test.TestCase):

  def _Sampler(self, num, minv, maxv, dtype, use_gpu, seed=None):

    def func():
      with self.test_session(use_gpu=use_gpu, graph=ops.Graph()) as sess:
        rng = random_ops.random_uniform(
            [num], minval=minv, maxval=maxv, dtype=dtype, seed=seed)
        ret = np.empty([10, num])
        for i in xrange(10):
          ret[i, :] = sess.run(rng)
      return ret

    return func

  def testRange(self):
    for dt in (dtypes.float16, dtypes.float32, dtypes.float64, dtypes.int32,
               dtypes.int64):
      sampler = self._Sampler(1000, minv=-2, maxv=8, dtype=dt, use_gpu=True)
      x = sampler()
      self.assertTrue(-2 <= np.min(x))
      self.assertTrue(np.max(x) < 8)

  # Asserts that different trials (1000 samples per trial) is unlikely
  # to see the same sequence of values. Will catch buggy
  # implementations which uses the same random number seed.
  def testDistinct(self):
    for dt in (dtypes.float16, dtypes.float32, dtypes.float64, dtypes.int32,
               dtypes.int64):
      maxv = 1.0 if dt.is_floating else 1 << 30
      sampler = self._Sampler(1000, minv=0, maxv=maxv, dtype=dt, use_gpu=True)
      x = sampler()
      y = sampler()
      count = (x == y).sum()
      count_limit = 50 if dt == dtypes.float16 else 10
      if count >= count_limit:
        print("x = ", x)
        print("y = ", y)
        print("count = ", count)
      self.assertTrue(count < count_limit)

  def testUniformIntsWithInvalidShape(self):
    for dtype in dtypes.int32, dtypes.int64:
      with self.assertRaisesRegexp(
          ValueError, "Shape must be rank 0 but is rank 1"):
        random_ops.random_uniform(
            [1000], minval=[1, 2], maxval=3, dtype=dtype)
      with self.assertRaisesRegexp(
          ValueError, "Shape must be rank 0 but is rank 1"):
        random_ops.random_uniform(
            [1000], minval=1, maxval=[2, 3], dtype=dtype)

  # Check that uniform ints actually follow a uniform distribution.
  def testUniformInts(self):
    minv = -2
    maxv = 15
    n = 100000
    p = 1 / (maxv - minv)
    # The counts should follow an (n, p) binomial distribution.
    mean = p * n
    std = np.sqrt(n * p * (1 - p))
    for dt in dtypes.int32, dtypes.int64:
      # Use a fixed seed here to make the test deterministic.
      # Without the fixed seed, the 5 * std bound will (very rarely) fail.
      sampler = self._Sampler(
          n // 10, minv=minv, maxv=maxv, dtype=dt, use_gpu=True, seed=17)
      x = sampler().ravel()
      self.assertEqual(x.shape, (n,))
      counts, _ = np.histogram(x, bins=maxv - minv)
      self.assertEqual(counts.shape, (maxv - minv,))
      self.assertEqual(counts.sum(), n)
      error = np.abs(counts - mean)
      self.assertLess(error.max(), 5 * std)

  # Checks that the CPU and GPU implementation returns the same results,
  # given the same random seed
  def testCPUGPUMatch(self):
    for dt in (dtypes.float16, dtypes.float32, dtypes.float64, dtypes.int32,
               dtypes.int64):
      maxv = 1.0 if dt.is_floating else 17
      results = {}
      for use_gpu in False, True:
        sampler = self._Sampler(
            1000000, minv=0, maxv=maxv, dtype=dt, use_gpu=use_gpu, seed=12345)
        results[use_gpu] = sampler()
      self.assertAllEqual(results[False], results[True])

  def testSeed(self):
    for dt in (dtypes.float16, dtypes.float32, dtypes.float64, dtypes.int32,
               dtypes.int64):
      for seed in [345, 2**100, -2**100]:
        sx = self._Sampler(1000, 0, 17, dtype=dt, use_gpu=True, seed=seed)
        sy = self._Sampler(1000, 0, 17, dtype=dt, use_gpu=True, seed=seed)
        self.assertAllEqual(sx(), sy())

  def testNoCSE(self):
    shape = [2, 3, 4]
    for dtype in dtypes.float16, dtypes.float32, dtypes.int32:
      with self.test_session(use_gpu=True):
        rnd1 = random_ops.random_uniform(shape, 0, 17, dtype=dtype)
        rnd2 = random_ops.random_uniform(shape, 0, 17, dtype=dtype)
        diff = (rnd2 - rnd1).eval()
        self.assertTrue(np.linalg.norm(diff) > 0.1)


class RandomShapeTest(test.TestCase):

  def testTruncatedNormal(self):
    # Fully known shape.
    rnd1 = random_ops.truncated_normal([1, 2, 3])
    self.assertEqual([1, 2, 3], rnd1.get_shape())
    # Partially known shape.
    rnd2 = random_ops.truncated_normal(
        array_ops.placeholder(dtypes.int32, shape=(3,)))
    self.assertEqual([None, None, None], rnd2.get_shape().as_list())
    # Unknown shape.
    rnd3 = random_ops.truncated_normal(array_ops.placeholder(dtypes.int32))
    self.assertIs(None, rnd3.get_shape().ndims)

  def testRandomNormal(self):
    # Fully known shape.
    rnd1 = random_ops.random_normal([1, 2, 3])
    self.assertEqual([1, 2, 3], rnd1.get_shape())
    # Partially known shape.
    rnd2 = random_ops.random_normal(
        array_ops.placeholder(dtypes.int32, shape=(3,)))
    self.assertEqual([None, None, None], rnd2.get_shape().as_list())
    # Unknown shape.
    rnd3 = random_ops.random_normal(array_ops.placeholder(dtypes.int32))
    self.assertIs(None, rnd3.get_shape().ndims)

  def testRandomUniform(self):
    # Fully known shape.
    rnd1 = random_ops.random_uniform([1, 2, 3])
    self.assertEqual([1, 2, 3], rnd1.get_shape())
    # Partially known shape.
    rnd2 = random_ops.random_uniform(
        array_ops.placeholder(dtypes.int32, shape=(3,)))
    self.assertEqual([None, None, None], rnd2.get_shape().as_list())
    # Unknown shape.
    rnd3 = random_ops.random_uniform(array_ops.placeholder(dtypes.int32))
    self.assertIs(None, rnd3.get_shape().ndims)


if __name__ == "__main__":
  test.main()