aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/random/random_gamma_test.py
blob: d9699444937f91b18d73cddc78444e756aff7c07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.random_ops.random_gamma."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging


class RandomGammaTest(test.TestCase):
  """This is a medium test due to the moments computation taking some time."""

  def setUp(self):
    np.random.seed(137)
    random_seed.set_random_seed(137)

  def _Sampler(self, num, alpha, beta, dtype, use_gpu, seed=None):

    def func():
      with self.test_session(use_gpu=use_gpu, graph=ops.Graph()) as sess:
        rng = random_ops.random_gamma(
            [num], alpha, beta=beta, dtype=dtype, seed=seed)
        ret = np.empty([10, num])
        for i in xrange(10):
          ret[i, :] = sess.run(rng)
      return ret

    return func

  def testMomentsFloat32(self):
    self._testMoments(dtypes.float32)

  def testMomentsFloat64(self):
    self._testMoments(dtypes.float64)

  def _testMoments(self, dt):
    try:
      from scipy import stats  # pylint: disable=g-import-not-at-top
    except ImportError as e:
      tf_logging.warn("Cannot test moments: %s" % e)
      return

    # Check the given array of samples matches the given theoretical moment
    # function at different orders. The test is considered passing if the
    # z-tests of all statistical moments are all below z_limit.
    # Parameters:
    #   max_moments: the largest moments of the distribution to be tested
    #   stride: the distance between samples to check for statistical properties
    #       0 means the n-th moment of each sample
    #       any other strides tests for spatial correlation between samples;
    #   z_limit: the maximum z-test we would consider the test to pass;

    # The moments test is a z-value test.  This is the largest z-value
    # we want to tolerate. Since the z-test approximates a unit normal
    # distribution, it should almost definitely never exceed 6.
    z_limit = 6.0

    for stride in 0, 1, 4, 17:
      alphas = [0.2, 1.0, 3.0]
      if dt == dtypes.float64:
        alphas = [0.01] + alphas
      for alpha in alphas:
        for scale in 9, 17:
          # Gamma moments only defined for values less than the scale param.
          max_moment = min(6, scale // 2)
          sampler = self._Sampler(
              20000, alpha, 1 / scale, dt, use_gpu=False, seed=12345)
          moments = [0] * (max_moment + 1)
          moments_sample_count = [0] * (max_moment + 1)
          x = np.array(sampler().flat)  # sampler does 10x samples
          for k in range(len(x)):
            moment = 1.
            for i in range(max_moment + 1):
              index = k + i * stride
              if index >= len(x):
                break
              moments[i] += moment
              moments_sample_count[i] += 1
              moment *= x[index]
          for i in range(max_moment + 1):
            moments[i] /= moments_sample_count[i]
          for i in range(1, max_moment + 1):
            g = stats.gamma(alpha, scale=scale)
            if stride == 0:
              moments_i_mean = g.moment(i)
              moments_i_squared = g.moment(2 * i)
            else:
              moments_i_mean = pow(g.moment(1), i)
              moments_i_squared = pow(g.moment(2), i)
            # Calculate moment variance safely:
            # This is just
            #  (moments_i_squared - moments_i_mean**2) / moments_sample_count[i]
            normalized_moments_i_var = (
                moments_i_mean / moments_sample_count[i] *
                (moments_i_squared / moments_i_mean - moments_i_mean))
            # Assume every operation has a small numerical error.
            # It takes i multiplications to calculate one i-th moment.
            error_per_moment = i * np.finfo(dt.as_numpy_dtype).eps
            total_variance = (normalized_moments_i_var + error_per_moment)
            tiny = np.finfo(dt.as_numpy_dtype).tiny
            self.assertGreaterEqual(total_variance, 0)
            if total_variance < tiny:
              total_variance = tiny
            # z_test is approximately a unit normal distribution.
            z_test = abs(
                (moments[i] - moments_i_mean) / math.sqrt(total_variance))
            self.assertLess(z_test, z_limit)

  def _testZeroDensity(self, alpha):
    """Zero isn't in the support of the gamma distribution.

    But quantized floating point math has its limits.
    TODO(bjp): Implement log-gamma sampler for small-shape distributions.

    Args:
      alpha: float shape value to test
    """
    try:
      from scipy import stats  # pylint: disable=g-import-not-at-top
    except ImportError as e:
      tf_logging.warn("Cannot test zero density proportions: %s" % e)
      return
    allowable_zeros = {
        dtypes.float16: stats.gamma(alpha).cdf(np.finfo(np.float16).tiny),
        dtypes.float32: stats.gamma(alpha).cdf(np.finfo(np.float32).tiny),
        dtypes.float64: stats.gamma(alpha).cdf(np.finfo(np.float64).tiny)
    }
    failures = []
    for use_gpu in [False, True]:
      for dt in dtypes.float16, dtypes.float32, dtypes.float64:
        sampler = self._Sampler(
            10000, alpha, 1.0, dt, use_gpu=use_gpu, seed=12345)
        x = sampler()
        allowable = allowable_zeros[dt] * x.size
        allowable = allowable * 2 if allowable < 10 else allowable * 1.05
        if np.sum(x <= 0) > allowable:
          failures += [(use_gpu, dt)]
      self.assertEqual([], failures)

  def testNonZeroSmallShape(self):
    self._testZeroDensity(0.01)

  def testNonZeroSmallishShape(self):
    self._testZeroDensity(0.35)

  # Asserts that different trials (1000 samples per trial) is unlikely
  # to see the same sequence of values. Will catch buggy
  # implementations which uses the same random number seed.
  def testDistinct(self):
    for use_gpu in [False, True]:
      for dt in dtypes.float16, dtypes.float32, dtypes.float64:
        sampler = self._Sampler(1000, 2.0, 1.0, dt, use_gpu=use_gpu)
        x = sampler()
        y = sampler()
        # Number of different samples.
        count = (x == y).sum()
        count_limit = 20 if dt == dtypes.float16 else 10
        if count >= count_limit:
          print(use_gpu, dt)
          print("x = ", x)
          print("y = ", y)
          print("count = ", count)
        self.assertLess(count, count_limit)

  # Checks that the CPU and GPU implementation returns the same results,
  # given the same random seed
  def testCPUGPUMatch(self):
    for dt in dtypes.float16, dtypes.float32, dtypes.float64:
      results = {}
      for use_gpu in [False, True]:
        sampler = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=12345)
        results[use_gpu] = sampler()
      if dt == dtypes.float16:
        self.assertAllClose(results[False], results[True], rtol=1e-3, atol=1e-3)
      else:
        self.assertAllClose(results[False], results[True], rtol=1e-6, atol=1e-6)

  def testSeed(self):
    for use_gpu in [False, True]:
      for dt in dtypes.float16, dtypes.float32, dtypes.float64:
        sx = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=345)
        sy = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=345)
        self.assertAllEqual(sx(), sy())

  def testNoCSE(self):
    """CSE = constant subexpression eliminator.

    SetIsStateful() should prevent two identical random ops from getting
    merged.
    """
    for dtype in dtypes.float16, dtypes.float32, dtypes.float64:
      for use_gpu in [False, True]:
        with self.test_session(use_gpu=use_gpu):
          rnd1 = random_ops.random_gamma([24], 2.0, dtype=dtype)
          rnd2 = random_ops.random_gamma([24], 2.0, dtype=dtype)
          diff = rnd2 - rnd1
          self.assertGreater(np.linalg.norm(diff.eval()), 0.1)

  def testShape(self):
    # Fully known shape.
    rnd = random_ops.random_gamma([150], 2.0)
    self.assertEqual([150], rnd.get_shape().as_list())
    rnd = random_ops.random_gamma([150], 2.0, beta=[3.0, 4.0])
    self.assertEqual([150, 2], rnd.get_shape().as_list())
    rnd = random_ops.random_gamma([150], array_ops.ones([1, 2, 3]))
    self.assertEqual([150, 1, 2, 3], rnd.get_shape().as_list())
    rnd = random_ops.random_gamma([20, 30], array_ops.ones([1, 2, 3]))
    self.assertEqual([20, 30, 1, 2, 3], rnd.get_shape().as_list())
    rnd = random_ops.random_gamma(
        [123], array_ops.placeholder(
            dtypes.float32, shape=(2,)))
    self.assertEqual([123, 2], rnd.get_shape().as_list())
    # Partially known shape.
    rnd = random_ops.random_gamma(
        array_ops.placeholder(
            dtypes.int32, shape=(1,)), array_ops.ones([7, 3]))
    self.assertEqual([None, 7, 3], rnd.get_shape().as_list())
    rnd = random_ops.random_gamma(
        array_ops.placeholder(
            dtypes.int32, shape=(3,)), array_ops.ones([9, 6]))
    self.assertEqual([None, None, None, 9, 6], rnd.get_shape().as_list())
    # Unknown shape.
    rnd = random_ops.random_gamma(
        array_ops.placeholder(dtypes.int32),
        array_ops.placeholder(dtypes.float32))
    self.assertIs(None, rnd.get_shape().ndims)
    rnd = random_ops.random_gamma([50], array_ops.placeholder(dtypes.float32))
    self.assertIs(None, rnd.get_shape().ndims)

  def testPositive(self):
    n = int(10e3)
    for dt in [dtypes.float16, dtypes.float32, dtypes.float64]:
      with self.cached_session():
        x = random_ops.random_gamma(shape=[n], alpha=0.001, dtype=dt, seed=0)
        self.assertEqual(0, math_ops.reduce_sum(math_ops.cast(
            math_ops.less_equal(x, 0.), dtype=dtypes.int64)).eval())


if __name__ == "__main__":
  test.main()