aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/random/multinomial_op_test.py
blob: 051c7d86bf2342f15b587fc350bfbede7fae2285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Multinomial."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import timeit

import numpy as np

from tensorflow.core.protobuf import config_pb2
from tensorflow.python.client import session
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.platform import test


def composed_sampler(logits, num_samples):
  # [batch size, num classes, num samples]
  unif = random_ops.random_uniform(logits.get_shape().concatenate(
      tensor_shape.TensorShape([num_samples])))
  noise = -math_ops.log(-math_ops.log(unif))
  # [batch size, num classes, 1]
  logits = array_ops.expand_dims(logits, -1)

  # [batch size, num samples]
  return math_ops.argmax(logits + noise, axis=1)


native_sampler = random_ops.multinomial


class MultinomialTest(test.TestCase):

  @test_util.run_in_graph_and_eager_modes()
  def testSmallEntropy(self):
    random_seed.set_random_seed(1618)
    for output_dtype in [np.int32, np.int64]:
      with test_util.device(use_gpu=True):
        # A logit value of -10 corresponds to a probability of ~5e-5.
        logits = constant_op.constant([[-10., 10., -10.], [-10., -10., 10.]])
        num_samples = 1000
        samples = self.evaluate(random_ops.multinomial(
            logits, num_samples, output_dtype=output_dtype))
        self.assertAllEqual([[1] * num_samples, [2] * num_samples], samples)

  def testOneOpMultipleStepsIndependent(self):
    with self.test_session(use_gpu=True) as sess:
      sample_op1, _ = self._make_ops(10)
      # Consecutive runs shouldn't yield identical output.
      sample1a = sess.run(sample_op1)
      sample1b = sess.run(sample_op1)
      self.assertFalse(np.equal(sample1a, sample1b).all())

  def testEagerOneOpMultipleStepsIndependent(self):
    with context.eager_mode(), test_util.device(use_gpu=True):
      sample1, sample2 = self._make_ops(10)
      # Consecutive runs shouldn't yield identical output.
      self.assertFalse(np.equal(sample1.numpy(), sample2.numpy()).all())

  def testTwoOpsIndependent(self):
    with self.test_session(use_gpu=True) as sess:
      sample_op1, sample_op2 = self._make_ops(32)
      sample1, sample2 = sess.run([sample_op1, sample_op2])
      # We expect sample1 and sample2 to be independent.
      # 1 in 2^32 chance of this assertion failing.
      self.assertFalse(np.equal(sample1, sample2).all())

  def testTwoOpsSameSeedDrawSameSequences(self):
    with self.test_session(use_gpu=True) as sess:
      sample_op1, sample_op2 = self._make_ops(1000, seed=1)
      sample1, sample2 = sess.run([sample_op1, sample_op2])
      self.assertAllEqual(sample1, sample2)

  def testLargeLogits(self):
    for neg in [True, False]:
      with self.test_session(use_gpu=True):
        logits = np.array([[1000.] * 5])
        if neg:
          logits *= -1
        samples = random_ops.multinomial(logits, 10).eval()
      # Sampled classes should be in-range.
      self.assertTrue((samples >= 0).all())
      self.assertTrue((samples < 5).all())

  def testSamplingCorrectness(self):
    np.random.seed(1618)  # Make it reproducible.
    num_samples = 21000

    rand_probs = self._normalize(np.random.random_sample((10,)))
    rand_probs2 = self._normalize(np.random.random_sample((3, 5)))  # batched
    for probs in [[.5, .5], [.85, .05, .1], rand_probs, rand_probs2]:
      probs = np.asarray(probs)
      if len(probs.shape) == 1:
        probs = probs.reshape(1, probs.size)  # singleton batch

      logits = np.log(probs).astype(np.float32)
      composed_freqs = self._do_sampling(logits, num_samples, composed_sampler)
      native_freqs = self._do_sampling(logits, num_samples, native_sampler)

      # the test here is similar to core/lib/random/distribution_sampler_test.cc
      composed_chi2 = self._chi2(probs, composed_freqs)
      native_chi2 = self._chi2(probs, native_freqs)
      composed_native_chi2 = self._chi2(composed_freqs, native_freqs)

      def check(chi2s):
        for chi2 in chi2s:
          self.assertLess(chi2, 1e-3)

      check(composed_chi2)
      check(native_chi2)
      check(composed_native_chi2)

  def _make_ops(self, num_samples, seed=None):
    prob_dist = constant_op.constant([[0.15, 0.5, 0.3, 0.05]])
    logits = math_ops.log(prob_dist)
    # Two independent sets of samples from the same distribution
    sample_op1 = random_ops.multinomial(logits, num_samples, seed)
    sample_op2 = random_ops.multinomial(logits, num_samples, seed)
    return (sample_op1, sample_op2)

  def _normalize(self, vec):
    batched = (len(vec.shape) == 2)
    return vec / vec.sum(axis=1, keepdims=True) if batched else vec / vec.sum()

  def _do_sampling(self, logits, num_samples, sampler):
    """Samples using the supplied sampler and inputs.

    Args:
      logits: Numpy ndarray of shape [batch_size, num_classes].
      num_samples: Int; number of samples to draw.
      sampler: A sampler function that takes (1) a [batch_size, num_classes]
        Tensor, (2) num_samples and returns a [batch_size, num_samples] Tensor.

    Returns:
      Frequencies from sampled classes; shape [batch_size, num_classes].
    """
    with self.test_session(use_gpu=True) as sess:
      random_seed.set_random_seed(1618)
      op = sampler(constant_op.constant(logits), num_samples)
      d = sess.run(op)

    batch_size, num_classes = logits.shape
    freqs_mat = []
    for i in range(batch_size):
      cnts = dict(collections.Counter(d[i, :]))

      # Requires drawn class labels be in range.
      self.assertLess(max(cnts.keys()), num_classes)
      self.assertGreaterEqual(min(cnts.keys()), 0)

      freqs = [(cnts[k] * 1. / num_samples if k in cnts else 0)
               for k in range(num_classes)]
      freqs_mat.append(freqs)

    return freqs_mat

  def _chi2(self, expected, actual):
    actual = np.asarray(actual)
    expected = np.asarray(expected)
    diff = actual - expected
    chi2 = np.sum(diff * diff / expected, axis=0)
    return chi2

  def testEmpty(self):
    classes = 5
    with self.test_session(use_gpu=True):
      for batch in 0, 3:
        for samples in 0, 7:
          x = random_ops.multinomial(
              array_ops.zeros([batch, classes]), samples).eval()
          self.assertEqual(x.shape, (batch, samples))

  def testEmptyClasses(self):
    with self.test_session(use_gpu=True):
      x = random_ops.multinomial(array_ops.zeros([5, 0]), 7)
      with self.assertRaisesOpError("num_classes should be positive"):
        x.eval()

  def testNegativeMinLogits(self):
    random_seed.set_random_seed(78844)
    with self.test_session(use_gpu=True):
      logits = constant_op.constant([[np.finfo(np.float32).min] * 1023 + [0]])
      num_samples = 1000
      samples = random_ops.multinomial(logits, num_samples).eval()
      self.assertAllEqual([[1023] * num_samples], samples)


# Benchmarking code
def native_op_vs_composed_ops(batch_size, num_classes, num_samples, num_iters):
  np.random.seed(1618)  # Make it reproducible.
  shape = [batch_size, num_classes]
  logits_np = np.random.randn(*shape).astype(np.float32)

  # No CSE/CF.
  optimizer_options = config_pb2.OptimizerOptions(
      opt_level=config_pb2.OptimizerOptions.L0)
  config = config_pb2.ConfigProto(graph_options=config_pb2.GraphOptions(
      optimizer_options=optimizer_options))

  with session.Session(config=config) as sess:
    logits = constant_op.constant(logits_np, shape=shape)
    native_op = control_flow_ops.group(native_sampler(logits, num_samples))
    composed_op = control_flow_ops.group(composed_sampler(logits, num_samples))

    native_dt = timeit.timeit(lambda: sess.run(native_op), number=num_iters)
    composed_dt = timeit.timeit(lambda: sess.run(composed_op), number=num_iters)
    return native_dt, composed_dt


class MultinomialBenchmark(test.Benchmark):

  def benchmarkNativeOpVsComposedOps(self):
    num_iters = 50
    print("Composition of existing ops vs. Native Multinomial op [%d iters]" %
          num_iters)
    print("BatchSize\tNumClasses\tNumSamples\tsec(composed)\tsec(native)\t"
          "speedup")

    for batch_size in [32, 128]:
      for num_classes in [10000, 100000]:
        for num_samples in [1, 4, 32]:
          n_dt, c_dt = native_op_vs_composed_ops(batch_size, num_classes,
                                                 num_samples, num_iters)
          print("%d\t%d\t%d\t%.3f\t%.3f\t%.2f" % (batch_size, num_classes,
                                                  num_samples, c_dt, n_dt,
                                                  c_dt / n_dt))

          self.report_benchmark(
              name="native_batch%d_classes%d_s%d" %
              (batch_size, num_classes, num_samples),
              iters=num_iters,
              wall_time=n_dt)
          self.report_benchmark(
              name="composed_batch%d_classes%d_s%d" %
              (batch_size, num_classes, num_samples),
              iters=num_iters,
              wall_time=c_dt)


if __name__ == "__main__":
  test.main()