aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/matrix_logarithm_op_test.py
blob: 3205e211d9dff985465918953f0cf0a264a3f649 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.gen_linalg_ops.matrix_logarithm."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function


import numpy as np

from tensorflow.python.client import session
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variables
from tensorflow.python.ops.linalg import linalg_impl
from tensorflow.python.platform import benchmark
from tensorflow.python.platform import test


class LogarithmOpTest(test.TestCase):

  def _verifyLogarithm(self, x, np_type):
    inp = x.astype(np_type)
    with self.test_session(use_gpu=True):
      # Verify that expm(logm(A)) == A.
      tf_ans = linalg_impl.matrix_exponential(
          gen_linalg_ops.matrix_logarithm(inp))
      out = tf_ans.eval()
      self.assertAllClose(inp, out, rtol=1e-4, atol=1e-3)

  def _verifyLogarithmComplex(self, x):
    for np_type in [np.complex64, np.complex128]:
      self._verifyLogarithm(x, np_type)

  def _makeBatch(self, matrix1, matrix2):
    matrix_batch = np.concatenate(
        [np.expand_dims(matrix1, 0),
         np.expand_dims(matrix2, 0)])
    matrix_batch = np.tile(matrix_batch, [2, 3, 1, 1])
    return matrix_batch

  def testNonsymmetric(self):
    # 2x2 matrices
    matrix1 = np.array([[1., 2.], [3., 4.]])
    matrix2 = np.array([[1., 3.], [3., 5.]])
    matrix1 = matrix1.astype(np.complex64)
    matrix1 += 1j * matrix1
    matrix2 = matrix2.astype(np.complex64)
    matrix2 += 1j * matrix2
    self._verifyLogarithmComplex(matrix1)
    self._verifyLogarithmComplex(matrix2)
    # Complex batch
    self._verifyLogarithmComplex(self._makeBatch(matrix1, matrix2))

  def testSymmetricPositiveDefinite(self):
    # 2x2 matrices
    matrix1 = np.array([[2., 1.], [1., 2.]])
    matrix2 = np.array([[3., -1.], [-1., 3.]])
    matrix1 = matrix1.astype(np.complex64)
    matrix1 += 1j * matrix1
    matrix2 = matrix2.astype(np.complex64)
    matrix2 += 1j * matrix2
    self._verifyLogarithmComplex(matrix1)
    self._verifyLogarithmComplex(matrix2)
    # Complex batch
    self._verifyLogarithmComplex(self._makeBatch(matrix1, matrix2))

  def testNonSquareMatrix(self):
    # When the logarithm of a non-square matrix is attempted we should return
    # an error
    with self.assertRaises(ValueError):
      gen_linalg_ops.matrix_logarithm(
          np.array([[1., 2., 3.], [3., 4., 5.]], dtype=np.complex64))

  def testWrongDimensions(self):
    # The input to the logarithm should be at least a 2-dimensional tensor.
    tensor3 = constant_op.constant([1., 2.], dtype=dtypes.complex64)
    with self.assertRaises(ValueError):
      gen_linalg_ops.matrix_logarithm(tensor3)

  def testEmpty(self):
    self._verifyLogarithmComplex(np.empty([0, 2, 2], dtype=np.complex64))
    self._verifyLogarithmComplex(np.empty([2, 0, 0], dtype=np.complex64))

  def testRandomSmallAndLargeComplex64(self):
    np.random.seed(42)
    for batch_dims in [(), (1,), (3,), (2, 2)]:
      for size in 8, 31, 32:
        shape = batch_dims + (size, size)
        matrix = np.random.uniform(
            low=-1.0, high=1.0,
            size=np.prod(shape)).reshape(shape).astype(np.complex64)
        self._verifyLogarithmComplex(matrix)

  def testRandomSmallAndLargeComplex128(self):
    np.random.seed(42)
    for batch_dims in [(), (1,), (3,), (2, 2)]:
      for size in 8, 31, 32:
        shape = batch_dims + (size, size)
        matrix = np.random.uniform(
            low=-1.0, high=1.0,
            size=np.prod(shape)).reshape(shape).astype(np.complex128)
        self._verifyLogarithmComplex(matrix)

  def testConcurrentExecutesWithoutError(self):
    with self.test_session(use_gpu=True) as sess:
      matrix1 = math_ops.cast(
          random_ops.random_normal([5, 5], seed=42), dtypes.complex64)
      matrix2 = math_ops.cast(
          random_ops.random_normal([5, 5], seed=42), dtypes.complex64)
      logm1 = gen_linalg_ops.matrix_logarithm(matrix1)
      logm2 = gen_linalg_ops.matrix_logarithm(matrix2)
      logm = sess.run([logm1, logm2])
      self.assertAllEqual(logm[0], logm[1])


class MatrixLogarithmBenchmark(test.Benchmark):

  shapes = [
      (4, 4),
      (10, 10),
      (16, 16),
      (101, 101),
      (256, 256),
      (1000, 1000),
      (1024, 1024),
      (2048, 2048),
      (513, 4, 4),
      (513, 16, 16),
      (513, 256, 256),
  ]

  def _GenerateMatrix(self, shape):
    batch_shape = shape[:-2]
    shape = shape[-2:]
    assert shape[0] == shape[1]
    n = shape[0]
    matrix = np.ones(shape).astype(np.complex64) / (
        2.0 * n) + np.diag(np.ones(n).astype(np.complex64))
    return variables.Variable(np.tile(matrix, batch_shape + (1, 1)))

  def benchmarkMatrixLogarithmOp(self):
    for shape in self.shapes:
      with ops.Graph().as_default(), \
          session.Session(config=benchmark.benchmark_config()) as sess, \
          ops.device("/cpu:0"):
        matrix = self._GenerateMatrix(shape)
        logm = gen_linalg_ops.matrix_logarithm(matrix)
        variables.global_variables_initializer().run()
        self.run_op_benchmark(
            sess,
            control_flow_ops.group(logm),
            min_iters=25,
            name="matrix_logarithm_cpu_{shape}".format(
                shape=shape))


if __name__ == "__main__":
  test.main()