aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/matrix_exponential_op_test.py
blob: 9630c052b8e643c1d11ee592d89efb10dcc2a703 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.linalg.linalg_impl.matrix_exponential."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools

import numpy as np

from tensorflow.python.client import session
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variables
from tensorflow.python.ops.linalg import linalg_impl
from tensorflow.python.platform import benchmark
from tensorflow.python.platform import test


def np_expm(x):  # pylint: disable=invalid-name
  """Slow but accurate Taylor series matrix exponential."""
  y = np.zeros(x.shape, dtype=x.dtype)
  xn = np.eye(x.shape[0], dtype=x.dtype)
  for n in range(40):
    if n > 0:
      xn /= float(n)
    y += xn
    xn = np.dot(xn, x)
  return y


class ExponentialOpTest(test.TestCase):

  def _verifyExponential(self, x, np_type):
    inp = x.astype(np_type)
    with self.test_session(use_gpu=True):
      tf_ans = linalg_impl.matrix_exponential(inp)
      if x.size == 0:
        np_ans = np.empty(x.shape, dtype=np_type)
      else:
        if x.ndim > 2:
          np_ans = np.zeros(inp.shape, dtype=np_type)
          for i in itertools.product(*[range(x) for x in inp.shape[:-2]]):
            np_ans[i] = np_expm(inp[i])
        else:
          np_ans = np_expm(inp)
      out = tf_ans.eval()
      self.assertAllClose(np_ans, out, rtol=1e-4, atol=1e-3)

  def _verifyExponentialReal(self, x):
    for np_type in [np.float32, np.float64]:
      self._verifyExponential(x, np_type)

  def _verifyExponentialComplex(self, x):
    for np_type in [np.complex64, np.complex128]:
      self._verifyExponential(x, np_type)

  def _makeBatch(self, matrix1, matrix2):
    matrix_batch = np.concatenate(
        [np.expand_dims(matrix1, 0),
         np.expand_dims(matrix2, 0)])
    matrix_batch = np.tile(matrix_batch, [2, 3, 1, 1])
    return matrix_batch

  def testNonsymmetricReal(self):
    # 2x2 matrices
    matrix1 = np.array([[1., 2.], [3., 4.]])
    matrix2 = np.array([[1., 3.], [3., 5.]])
    self._verifyExponentialReal(matrix1)
    self._verifyExponentialReal(matrix2)
    # A multidimensional batch of 2x2 matrices
    self._verifyExponentialReal(self._makeBatch(matrix1, matrix2))

  def testNonsymmetricComplex(self):
    matrix1 = np.array([[1., 2.], [3., 4.]])
    matrix2 = np.array([[1., 3.], [3., 5.]])
    matrix1 = matrix1.astype(np.complex64)
    matrix1 += 1j * matrix1
    matrix2 = matrix2.astype(np.complex64)
    matrix2 += 1j * matrix2
    self._verifyExponentialComplex(matrix1)
    self._verifyExponentialComplex(matrix2)
    # Complex batch
    self._verifyExponentialComplex(self._makeBatch(matrix1, matrix2))

  def testSymmetricPositiveDefiniteReal(self):
    # 2x2 matrices
    matrix1 = np.array([[2., 1.], [1., 2.]])
    matrix2 = np.array([[3., -1.], [-1., 3.]])
    self._verifyExponentialReal(matrix1)
    self._verifyExponentialReal(matrix2)
    # A multidimensional batch of 2x2 matrices
    self._verifyExponentialReal(self._makeBatch(matrix1, matrix2))

  def testSymmetricPositiveDefiniteComplex(self):
    matrix1 = np.array([[2., 1.], [1., 2.]])
    matrix2 = np.array([[3., -1.], [-1., 3.]])
    matrix1 = matrix1.astype(np.complex64)
    matrix1 += 1j * matrix1
    matrix2 = matrix2.astype(np.complex64)
    matrix2 += 1j * matrix2
    self._verifyExponentialComplex(matrix1)
    self._verifyExponentialComplex(matrix2)
    # Complex batch
    self._verifyExponentialComplex(self._makeBatch(matrix1, matrix2))

  def testNonSquareMatrix(self):
    # When the exponential of a non-square matrix is attempted we should return
    # an error
    with self.assertRaises(ValueError):
      linalg_impl.matrix_exponential(np.array([[1., 2., 3.], [3., 4., 5.]]))

  def testWrongDimensions(self):
    # The input to the exponential should be at least a 2-dimensional tensor.
    tensor3 = constant_op.constant([1., 2.])
    with self.assertRaises(ValueError):
      linalg_impl.matrix_exponential(tensor3)

  def testEmpty(self):
    self._verifyExponentialReal(np.empty([0, 2, 2]))
    self._verifyExponentialReal(np.empty([2, 0, 0]))

  def testDynamic(self):
    with self.test_session(use_gpu=True) as sess:
      inp = array_ops.placeholder(ops.dtypes.float32)
      expm = linalg_impl.matrix_exponential(inp)
      matrix = np.array([[1., 2.], [3., 4.]])
      sess.run(expm, feed_dict={inp: matrix})

  def testConcurrentExecutesWithoutError(self):
    with self.test_session(use_gpu=True) as sess:
      matrix1 = random_ops.random_normal([5, 5], seed=42)
      matrix2 = random_ops.random_normal([5, 5], seed=42)
      expm1 = linalg_impl.matrix_exponential(matrix1)
      expm2 = linalg_impl.matrix_exponential(matrix2)
      expm = sess.run([expm1, expm2])
      self.assertAllEqual(expm[0], expm[1])


class MatrixExponentialBenchmark(test.Benchmark):

  shapes = [
      (4, 4),
      (10, 10),
      (16, 16),
      (101, 101),
      (256, 256),
      (1000, 1000),
      (1024, 1024),
      (2048, 2048),
      (513, 4, 4),
      (513, 16, 16),
      (513, 256, 256),
  ]

  def _GenerateMatrix(self, shape):
    batch_shape = shape[:-2]
    shape = shape[-2:]
    assert shape[0] == shape[1]
    n = shape[0]
    matrix = np.ones(shape).astype(np.float32) / (
        2.0 * n) + np.diag(np.ones(n).astype(np.float32))
    return variables.Variable(np.tile(matrix, batch_shape + (1, 1)))

  def benchmarkMatrixExponentialOp(self):
    for shape in self.shapes:
      with ops.Graph().as_default(), \
          session.Session(config=benchmark.benchmark_config()) as sess, \
          ops.device("/cpu:0"):
        matrix = self._GenerateMatrix(shape)
        expm = linalg_impl.matrix_exponential(matrix)
        variables.global_variables_initializer().run()
        self.run_op_benchmark(
            sess,
            control_flow_ops.group(expm),
            min_iters=25,
            name="matrix_exponential_cpu_{shape}".format(
                shape=shape))

      if test.is_gpu_available(True):
        with ops.Graph().as_default(), \
            session.Session(config=benchmark.benchmark_config()) as sess, \
            ops.device("/gpu:0"):
          matrix = self._GenerateMatrix(shape)
          expm = linalg_impl.matrix_exponential(matrix)
          variables.global_variables_initializer().run()
          self.run_op_benchmark(
              sess,
              control_flow_ops.group(expm),
              min_iters=25,
              name="matrix_exponential_gpu_{shape}".format(
                  shape=shape))


def _TestRandomSmall(dtype, batch_dims, size):

  def Test(self):
    np.random.seed(42)
    shape = batch_dims + (size, size)
    matrix = np.random.uniform(
        low=-1.0, high=1.0,
        size=shape).astype(dtype)
    self._verifyExponentialReal(matrix)

  return Test


def _TestL1Norms(dtype, shape, scale):

  def Test(self):
    np.random.seed(42)
    matrix = np.random.uniform(
        low=-1.0, high=1.0,
        size=np.prod(shape)).reshape(shape).astype(dtype)
    print(dtype, shape, scale, matrix)
    l1_norm = np.max(np.sum(np.abs(matrix), axis=matrix.ndim-2))
    matrix /= l1_norm
    self._verifyExponentialReal(scale * matrix)

  return Test


if __name__ == "__main__":
  for dtype_ in [np.float32, np.float64, np.complex64, np.complex128]:
    for batch_ in [(), (2,), (2, 2)]:
      for size_ in [4, 7]:
        name = "%s_%d_%d" % (dtype_.__name__, len(batch_), size_)
        setattr(ExponentialOpTest, "testL1Norms_" + name,
                _TestRandomSmall(dtype_, batch_, size_))

  for shape_ in [(3, 3), (2, 3, 3)]:
    for dtype_ in [np.float32, np.complex64]:
      for scale_ in [0.1, 1.5, 5.0, 20.0]:
        name = "%s_%d_%d" % (dtype_.__name__, len(shape_), int(scale_*10))
        setattr(ExponentialOpTest, "testL1Norms_" + name,
                _TestL1Norms(dtype_, shape_, scale_))
    for dtype_ in [np.float64, np.complex128]:
      for scale_ in [0.01, 0.2, 0.5, 1.5, 6.0, 25.0]:
        name = "%s_%d_%d" % (dtype_.__name__, len(shape_), int(scale_*100))
        setattr(ExponentialOpTest, "testL1Norms_" + name,
                _TestL1Norms(dtype_, shape_, scale_))
  test.main()