aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/linalg/linear_operator_full_matrix_test.py
blob: 8c2d2cf0774b682835f521f2e434d87fbc2aec84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.linalg import linalg as linalg_lib
from tensorflow.python.ops.linalg import linear_operator_test_util
from tensorflow.python.platform import test

linalg = linalg_lib


class SquareLinearOperatorFullMatrixTest(
    linear_operator_test_util.SquareLinearOperatorDerivedClassTest):
  """Most tests done in the base class LinearOperatorDerivedClassTest."""

  def _operator_and_matrix(self, build_info, dtype, use_placeholder):
    shape = list(build_info.shape)

    matrix = linear_operator_test_util.random_positive_definite_matrix(
        shape, dtype)

    lin_op_matrix = matrix

    if use_placeholder:
      lin_op_matrix = array_ops.placeholder_with_default(matrix, shape=None)

    operator = linalg.LinearOperatorFullMatrix(lin_op_matrix, is_square=True)

    return operator, matrix

  def test_is_x_flags(self):
    # Matrix with two positive eigenvalues.
    matrix = [[1., 0.], [1., 11.]]
    operator = linalg.LinearOperatorFullMatrix(
        matrix,
        is_positive_definite=True,
        is_non_singular=True,
        is_self_adjoint=False)
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertFalse(operator.is_self_adjoint)
    # Auto-detected.
    self.assertTrue(operator.is_square)

  def test_assert_non_singular_raises_if_cond_too_big_but_finite(self):
    with self.cached_session():
      tril = linear_operator_test_util.random_tril_matrix(
          shape=(50, 50), dtype=np.float32)
      diag = np.logspace(-2, 2, 50).astype(np.float32)
      tril = array_ops.matrix_set_diag(tril, diag)
      matrix = math_ops.matmul(tril, tril, transpose_b=True).eval()
      operator = linalg.LinearOperatorFullMatrix(matrix)
      with self.assertRaisesOpError("Singular matrix"):
        # Ensure that we have finite condition number...just HUGE.
        cond = np.linalg.cond(matrix)
        self.assertTrue(np.isfinite(cond))
        self.assertGreater(cond, 1e12)
        operator.assert_non_singular().run()

  def test_assert_non_singular_raises_if_cond_infinite(self):
    with self.cached_session():
      matrix = [[1., 1.], [1., 1.]]
      # We don't pass the is_self_adjoint hint here, which means we take the
      # generic code path.
      operator = linalg.LinearOperatorFullMatrix(matrix)
      with self.assertRaisesOpError("Singular matrix"):
        operator.assert_non_singular().run()

  def test_assert_self_adjoint(self):
    matrix = [[0., 1.], [0., 1.]]
    operator = linalg.LinearOperatorFullMatrix(matrix)
    with self.cached_session():
      with self.assertRaisesOpError("not equal to its adjoint"):
        operator.assert_self_adjoint().run()

  def test_assert_positive_definite(self):
    matrix = [[1., 1.], [1., 1.]]
    operator = linalg.LinearOperatorFullMatrix(matrix, is_self_adjoint=True)
    with self.cached_session():
      with self.assertRaisesOpError("Cholesky decomposition was not success"):
        operator.assert_positive_definite().run()


class SquareLinearOperatorFullMatrixSymmetricPositiveDefiniteTest(
    linear_operator_test_util.SquareLinearOperatorDerivedClassTest):
  """Most tests done in the base class LinearOperatorDerivedClassTest.

  In this test, the operator is constructed with hints that invoke the use of
  a Cholesky decomposition for solves/determinant.
  """

  def setUp(self):
    # Increase from 1e-6 to 1e-5.  This reduction in tolerance happens,
    # presumably, because we are taking a different code path in the operator
    # and the matrix.  The operator uses a Choleksy, the matrix uses standard
    # solve.
    self._atol[dtypes.float32] = 1e-5
    self._rtol[dtypes.float32] = 1e-5
    self._atol[dtypes.float64] = 1e-10
    self._rtol[dtypes.float64] = 1e-10

  @property
  def _dtypes_to_test(self):
    return [dtypes.float32, dtypes.float64]

  def _operator_and_matrix(self, build_info, dtype, use_placeholder):
    shape = list(build_info.shape)

    matrix = linear_operator_test_util.random_positive_definite_matrix(
        shape, dtype, force_well_conditioned=True)

    lin_op_matrix = matrix

    if use_placeholder:
      lin_op_matrix = array_ops.placeholder_with_default(matrix, shape=None)

    operator = linalg.LinearOperatorFullMatrix(lin_op_matrix, is_square=True)

    return operator, matrix

  def test_is_x_flags(self):
    # Matrix with two positive eigenvalues.
    matrix = [[1., 0.], [0., 7.]]
    operator = linalg.LinearOperatorFullMatrix(
        matrix, is_positive_definite=True, is_self_adjoint=True)

    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_self_adjoint)

    # Should be auto-set
    self.assertTrue(operator.is_non_singular)
    self.assertTrue(operator._can_use_cholesky)
    self.assertTrue(operator.is_square)

  def test_assert_non_singular(self):
    matrix = [[1., 1.], [1., 1.]]
    operator = linalg.LinearOperatorFullMatrix(
        matrix, is_self_adjoint=True, is_positive_definite=True)
    with self.cached_session():
      # Cholesky decomposition may fail, so the error is not specific to
      # non-singular.
      with self.assertRaisesOpError(""):
        operator.assert_non_singular().run()

  def test_assert_self_adjoint(self):
    matrix = [[0., 1.], [0., 1.]]
    operator = linalg.LinearOperatorFullMatrix(
        matrix, is_self_adjoint=True, is_positive_definite=True)
    with self.cached_session():
      with self.assertRaisesOpError("not equal to its adjoint"):
        operator.assert_self_adjoint().run()

  def test_assert_positive_definite(self):
    matrix = [[1., 1.], [1., 1.]]
    operator = linalg.LinearOperatorFullMatrix(
        matrix, is_self_adjoint=True, is_positive_definite=True)
    with self.cached_session():
      # Cholesky decomposition may fail, so the error is not specific to
      # non-singular.
      with self.assertRaisesOpError(""):
        operator.assert_positive_definite().run()


class NonSquareLinearOperatorFullMatrixTest(
    linear_operator_test_util.NonSquareLinearOperatorDerivedClassTest):
  """Most tests done in the base class LinearOperatorDerivedClassTest."""

  def _operator_and_matrix(self, build_info, dtype, use_placeholder):
    shape = list(build_info.shape)
    matrix = linear_operator_test_util.random_normal(shape, dtype=dtype)

    lin_op_matrix = matrix

    if use_placeholder:
      lin_op_matrix = array_ops.placeholder_with_default(matrix, shape=None)

    operator = linalg.LinearOperatorFullMatrix(lin_op_matrix, is_square=True)

    return operator, matrix

  def test_is_x_flags(self):
    matrix = [[3., 2., 1.], [1., 1., 1.]]
    operator = linalg.LinearOperatorFullMatrix(
        matrix,
        is_self_adjoint=False)
    self.assertEqual(operator.is_positive_definite, None)
    self.assertEqual(operator.is_non_singular, None)
    self.assertFalse(operator.is_self_adjoint)
    self.assertFalse(operator.is_square)

  def test_matrix_must_have_at_least_two_dims_or_raises(self):
    with self.assertRaisesRegexp(ValueError, "at least 2 dimensions"):
      linalg.LinearOperatorFullMatrix([1.])


if __name__ == "__main__":
  test.main()