aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/linalg/linear_operator_block_diag_test.py
blob: 3ede2aceaa51c2795029ba13b763fed3e2ddc441 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import random_seed
from tensorflow.python.ops import array_ops
from tensorflow.python.ops.linalg import linalg as linalg_lib
from tensorflow.python.ops.linalg import linear_operator_block_diag as block_diag
from tensorflow.python.ops.linalg import linear_operator_test_util
from tensorflow.python.ops.linalg import linear_operator_util
from tensorflow.python.platform import test

linalg = linalg_lib
random_seed.set_random_seed(23)
rng = np.random.RandomState(0)


def _block_diag_dense(expected_shape, blocks):
  """Convert a list of blocks, into a dense block diagonal matrix."""
  rows = []
  num_cols = 0
  for block in blocks:
    # Get the batch shape for the block.
    batch_row_shape = array_ops.shape(block)[:-1]

    zeros_to_pad_before_shape = array_ops.concat(
        [batch_row_shape, [num_cols]], axis=-1)
    zeros_to_pad_before = array_ops.zeros(
        shape=zeros_to_pad_before_shape, dtype=block.dtype)
    num_cols += array_ops.shape(block)[-1]
    zeros_to_pad_after_shape = array_ops.concat(
        [batch_row_shape, [expected_shape[-2] - num_cols]], axis=-1)
    zeros_to_pad_after = array_ops.zeros(
        zeros_to_pad_after_shape, dtype=block.dtype)

    rows.append(array_ops.concat(
        [zeros_to_pad_before, block, zeros_to_pad_after], axis=-1))

  return array_ops.concat(rows, axis=-2)


class SquareLinearOperatorBlockDiagTest(
    linear_operator_test_util.SquareLinearOperatorDerivedClassTest):
  """Most tests done in the base class LinearOperatorDerivedClassTest."""

  def setUp(self):
    # Increase from 1e-6 to 1e-4
    self._atol[dtypes.float32] = 1e-4
    self._atol[dtypes.complex64] = 1e-4
    self._rtol[dtypes.float32] = 1e-4
    self._rtol[dtypes.complex64] = 1e-4

  @property
  def _operator_build_infos(self):
    build_info = linear_operator_test_util.OperatorBuildInfo
    return [
        build_info((0, 0)),
        build_info((1, 1)),
        build_info((1, 3, 3)),
        build_info((5, 5), blocks=[(2, 2), (3, 3)]),
        build_info((3, 7, 7), blocks=[(1, 2, 2), (3, 2, 2), (1, 3, 3)]),
        build_info((2, 1, 5, 5), blocks=[(2, 1, 2, 2), (1, 3, 3)]),
    ]

  def _operator_and_matrix(self, build_info, dtype, use_placeholder):
    shape = list(build_info.shape)
    expected_blocks = (
        build_info.__dict__["blocks"] if "blocks" in build_info.__dict__
        else [shape])
    matrices = [
        linear_operator_test_util.random_positive_definite_matrix(
            block_shape, dtype, force_well_conditioned=True)
        for block_shape in expected_blocks
    ]

    lin_op_matrices = matrices

    if use_placeholder:
      lin_op_matrices = [
          array_ops.placeholder_with_default(
              matrix, shape=None) for matrix in matrices]

    operator = block_diag.LinearOperatorBlockDiag(
        [linalg.LinearOperatorFullMatrix(
            l, is_square=True) for l in lin_op_matrices])

    # Should be auto-set.
    self.assertTrue(operator.is_square)

    # Broadcast the shapes.
    expected_shape = list(build_info.shape)

    matrices = linear_operator_util.broadcast_matrix_batch_dims(matrices)

    block_diag_dense = _block_diag_dense(expected_shape, matrices)

    if not use_placeholder:
      block_diag_dense.set_shape(
          expected_shape[:-2] + [expected_shape[-1], expected_shape[-1]])

    return operator, block_diag_dense

  def test_is_x_flags(self):
    # Matrix with two positive eigenvalues, 1, and 1.
    # The matrix values do not effect auto-setting of the flags.
    matrix = [[1., 0.], [1., 1.]]
    operator = block_diag.LinearOperatorBlockDiag(
        [linalg.LinearOperatorFullMatrix(matrix)],
        is_positive_definite=True,
        is_non_singular=True,
        is_self_adjoint=False)
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertFalse(operator.is_self_adjoint)

  def test_is_non_singular_auto_set(self):
    # Matrix with two positive eigenvalues, 11 and 8.
    # The matrix values do not effect auto-setting of the flags.
    matrix = [[11., 0.], [1., 8.]]
    operator_1 = linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True)
    operator_2 = linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True)

    operator = block_diag.LinearOperatorBlockDiag(
        [operator_1, operator_2],
        is_positive_definite=False,  # No reason it HAS to be False...
        is_non_singular=None)
    self.assertFalse(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)

    with self.assertRaisesRegexp(ValueError, "always non-singular"):
      block_diag.LinearOperatorBlockDiag(
          [operator_1, operator_2], is_non_singular=False)

  def test_name(self):
    matrix = [[11., 0.], [1., 8.]]
    operator_1 = linalg.LinearOperatorFullMatrix(matrix, name="left")
    operator_2 = linalg.LinearOperatorFullMatrix(matrix, name="right")

    operator = block_diag.LinearOperatorBlockDiag([operator_1, operator_2])

    self.assertEqual("left_ds_right", operator.name)

  def test_different_dtypes_raises(self):
    operators = [
        linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3)),
        linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3).astype(np.float32))
    ]
    with self.assertRaisesRegexp(TypeError, "same dtype"):
      block_diag.LinearOperatorBlockDiag(operators)

  def test_non_square_operator_raises(self):
    operators = [
        linalg.LinearOperatorFullMatrix(rng.rand(3, 4), is_square=False),
        linalg.LinearOperatorFullMatrix(rng.rand(3, 3))
    ]
    with self.assertRaisesRegexp(ValueError, "square matrices"):
      block_diag.LinearOperatorBlockDiag(operators)

  def test_empty_operators_raises(self):
    with self.assertRaisesRegexp(ValueError, "non-empty"):
      block_diag.LinearOperatorBlockDiag([])


if __name__ == "__main__":
  test.main()