aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/linalg/linear_operator_addition_test.py
blob: 628ed998c54ab52771db210bd1a9aa363f29237b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops.linalg import linalg as linalg_lib
from tensorflow.python.ops.linalg import linear_operator_addition
from tensorflow.python.platform import test

linalg = linalg_lib
rng = np.random.RandomState(0)

add_operators = linear_operator_addition.add_operators


# pylint: disable=unused-argument
class _BadAdder(linear_operator_addition._Adder):
  """Adder that will fail if used."""

  def can_add(self, op1, op2):
    raise AssertionError("BadAdder.can_add called!")

  def _add(self, op1, op2, operator_name, hints):
    raise AssertionError("This line should not be reached")


# pylint: enable=unused-argument


class LinearOperatorAdditionCorrectnessTest(test.TestCase):
  """Tests correctness of addition with combinations of a few Adders.

  Tests here are done with the _DEFAULT_ADDITION_TIERS, which means
  add_operators should reduce all operators resulting in one single operator.

  This shows that we are able to correctly combine adders using the tiered
  system.  All Adders should be tested separately, and there is no need to test
  every Adder within this class.
  """

  def test_one_operator_is_returned_unchanged(self):
    op_a = linalg.LinearOperatorDiag([1., 1.])
    op_sum = add_operators([op_a])
    self.assertEqual(1, len(op_sum))
    self.assertIs(op_sum[0], op_a)

  def test_at_least_one_operators_required(self):
    with self.assertRaisesRegexp(ValueError, "must contain at least one"):
      add_operators([])

  def test_attempting_to_add_numbers_raises(self):
    with self.assertRaisesRegexp(TypeError, "contain only LinearOperator"):
      add_operators([1, 2])

  def test_two_diag_operators(self):
    op_a = linalg.LinearOperatorDiag(
        [1., 1.], is_positive_definite=True, name="A")
    op_b = linalg.LinearOperatorDiag(
        [2., 2.], is_positive_definite=True, name="B")
    with self.cached_session():
      op_sum = add_operators([op_a, op_b])
      self.assertEqual(1, len(op_sum))
      op = op_sum[0]
      self.assertIsInstance(op, linalg_lib.LinearOperatorDiag)
      self.assertAllClose([[3., 0.], [0., 3.]], op.to_dense().eval())
      # Adding positive definite operators produces positive def.
      self.assertTrue(op.is_positive_definite)
      # Real diagonal ==> self-adjoint.
      self.assertTrue(op.is_self_adjoint)
      # Positive definite ==> non-singular
      self.assertTrue(op.is_non_singular)
      # Enforce particular name for this simple case
      self.assertEqual("Add/B__A/", op.name)

  def test_three_diag_operators(self):
    op1 = linalg.LinearOperatorDiag(
        [1., 1.], is_positive_definite=True, name="op1")
    op2 = linalg.LinearOperatorDiag(
        [2., 2.], is_positive_definite=True, name="op2")
    op3 = linalg.LinearOperatorDiag(
        [3., 3.], is_positive_definite=True, name="op3")
    with self.cached_session():
      op_sum = add_operators([op1, op2, op3])
      self.assertEqual(1, len(op_sum))
      op = op_sum[0]
      self.assertTrue(isinstance(op, linalg_lib.LinearOperatorDiag))
      self.assertAllClose([[6., 0.], [0., 6.]], op.to_dense().eval())
      # Adding positive definite operators produces positive def.
      self.assertTrue(op.is_positive_definite)
      # Real diagonal ==> self-adjoint.
      self.assertTrue(op.is_self_adjoint)
      # Positive definite ==> non-singular
      self.assertTrue(op.is_non_singular)

  def test_diag_tril_diag(self):
    op1 = linalg.LinearOperatorDiag(
        [1., 1.], is_non_singular=True, name="diag_a")
    op2 = linalg.LinearOperatorLowerTriangular(
        [[2., 0.], [0., 2.]],
        is_self_adjoint=True,
        is_non_singular=True,
        name="tril")
    op3 = linalg.LinearOperatorDiag(
        [3., 3.], is_non_singular=True, name="diag_b")
    with self.cached_session():
      op_sum = add_operators([op1, op2, op3])
      self.assertEqual(1, len(op_sum))
      op = op_sum[0]
      self.assertIsInstance(op, linalg_lib.LinearOperatorLowerTriangular)
      self.assertAllClose([[6., 0.], [0., 6.]], op.to_dense().eval())

      # The diag operators will be self-adjoint (because real and diagonal).
      # The TriL operator has the self-adjoint hint set.
      self.assertTrue(op.is_self_adjoint)

      # Even though op1/2/3 are non-singular, this does not imply op is.
      # Since no custom hint was provided, we default to None (unknown).
      self.assertEqual(None, op.is_non_singular)

  def test_matrix_diag_tril_diag_uses_custom_name(self):
    op0 = linalg.LinearOperatorFullMatrix(
        [[-1., -1.], [-1., -1.]], name="matrix")
    op1 = linalg.LinearOperatorDiag([1., 1.], name="diag_a")
    op2 = linalg.LinearOperatorLowerTriangular(
        [[2., 0.], [1.5, 2.]], name="tril")
    op3 = linalg.LinearOperatorDiag([3., 3.], name="diag_b")
    with self.cached_session():
      op_sum = add_operators([op0, op1, op2, op3], operator_name="my_operator")
      self.assertEqual(1, len(op_sum))
      op = op_sum[0]
      self.assertIsInstance(op, linalg_lib.LinearOperatorFullMatrix)
      self.assertAllClose([[5., -1.], [0.5, 5.]], op.to_dense().eval())
      self.assertEqual("my_operator", op.name)

  def test_incompatible_domain_dimensions_raises(self):
    op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3))
    op2 = linalg.LinearOperatorDiag(rng.rand(2, 4))
    with self.assertRaisesRegexp(ValueError, "must.*same domain dimension"):
      add_operators([op1, op2])

  def test_incompatible_range_dimensions_raises(self):
    op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3))
    op2 = linalg.LinearOperatorDiag(rng.rand(3, 3))
    with self.assertRaisesRegexp(ValueError, "must.*same range dimension"):
      add_operators([op1, op2])

  def test_non_broadcastable_batch_shape_raises(self):
    op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3))
    op2 = linalg.LinearOperatorDiag(rng.rand(4, 3, 3))
    with self.assertRaisesRegexp(ValueError, "Incompatible shapes"):
      add_operators([op1, op2])


class LinearOperatorOrderOfAdditionTest(test.TestCase):
  """Test that the order of addition is done as specified by tiers."""

  def test_tier_0_additions_done_in_tier_0(self):
    diag1 = linalg.LinearOperatorDiag([1.])
    diag2 = linalg.LinearOperatorDiag([1.])
    diag3 = linalg.LinearOperatorDiag([1.])
    addition_tiers = [
        [linear_operator_addition._AddAndReturnDiag()],
        [_BadAdder()],
    ]
    # Should not raise since all were added in tier 0, and tier 1 (with the
    # _BadAdder) was never reached.
    op_sum = add_operators([diag1, diag2, diag3], addition_tiers=addition_tiers)
    self.assertEqual(1, len(op_sum))
    self.assertIsInstance(op_sum[0], linalg.LinearOperatorDiag)

  def test_tier_1_additions_done_by_tier_1(self):
    diag1 = linalg.LinearOperatorDiag([1.])
    diag2 = linalg.LinearOperatorDiag([1.])
    tril = linalg.LinearOperatorLowerTriangular([[1.]])
    addition_tiers = [
        [linear_operator_addition._AddAndReturnDiag()],
        [linear_operator_addition._AddAndReturnTriL()],
        [_BadAdder()],
    ]
    # Should not raise since all were added by tier 1, and the
    # _BadAdder) was never reached.
    op_sum = add_operators([diag1, diag2, tril], addition_tiers=addition_tiers)
    self.assertEqual(1, len(op_sum))
    self.assertIsInstance(op_sum[0], linalg.LinearOperatorLowerTriangular)

  def test_tier_1_additions_done_by_tier_1_with_order_flipped(self):
    diag1 = linalg.LinearOperatorDiag([1.])
    diag2 = linalg.LinearOperatorDiag([1.])
    tril = linalg.LinearOperatorLowerTriangular([[1.]])
    addition_tiers = [
        [linear_operator_addition._AddAndReturnTriL()],
        [linear_operator_addition._AddAndReturnDiag()],
        [_BadAdder()],
    ]
    # Tier 0 could convert to TriL, and this converted everything to TriL,
    # including the Diags.
    # Tier 1 was never used.
    # Tier 2 was never used (therefore, _BadAdder didn't raise).
    op_sum = add_operators([diag1, diag2, tril], addition_tiers=addition_tiers)
    self.assertEqual(1, len(op_sum))
    self.assertIsInstance(op_sum[0], linalg.LinearOperatorLowerTriangular)

  def test_cannot_add_everything_so_return_more_than_one_operator(self):
    diag1 = linalg.LinearOperatorDiag([1.])
    diag2 = linalg.LinearOperatorDiag([2.])
    tril5 = linalg.LinearOperatorLowerTriangular([[5.]])
    addition_tiers = [
        [linear_operator_addition._AddAndReturnDiag()],
    ]
    # Tier 0 (the only tier) can only convert to Diag, so it combines the two
    # diags, but the TriL is unchanged.
    # Result should contain two operators, one Diag, one TriL.
    op_sum = add_operators([diag1, diag2, tril5], addition_tiers=addition_tiers)
    self.assertEqual(2, len(op_sum))
    found_diag = False
    found_tril = False
    with self.cached_session():
      for op in op_sum:
        if isinstance(op, linalg.LinearOperatorDiag):
          found_diag = True
          self.assertAllClose([[3.]], op.to_dense().eval())
        if isinstance(op, linalg.LinearOperatorLowerTriangular):
          found_tril = True
          self.assertAllClose([[5.]], op.to_dense().eval())
      self.assertTrue(found_diag and found_tril)

  def test_intermediate_tier_is_not_skipped(self):
    diag1 = linalg.LinearOperatorDiag([1.])
    diag2 = linalg.LinearOperatorDiag([1.])
    tril = linalg.LinearOperatorLowerTriangular([[1.]])
    addition_tiers = [
        [linear_operator_addition._AddAndReturnDiag()],
        [_BadAdder()],
        [linear_operator_addition._AddAndReturnTriL()],
    ]
    # tril cannot be added in tier 0, and the intermediate tier 1 with the
    # BadAdder will catch it and raise.
    with self.assertRaisesRegexp(AssertionError, "BadAdder.can_add called"):
      add_operators([diag1, diag2, tril], addition_tiers=addition_tiers)


class AddAndReturnScaledIdentityTest(test.TestCase):

  def setUp(self):
    self._adder = linear_operator_addition._AddAndReturnScaledIdentity()

  def test_identity_plus_identity(self):
    id1 = linalg.LinearOperatorIdentity(num_rows=2)
    id2 = linalg.LinearOperatorIdentity(num_rows=2, batch_shape=[3])
    hints = linear_operator_addition._Hints(
        is_positive_definite=True, is_non_singular=True)

    self.assertTrue(self._adder.can_add(id1, id2))
    operator = self._adder.add(id1, id2, "my_operator", hints)
    self.assertIsInstance(operator, linalg.LinearOperatorScaledIdentity)

    with self.cached_session():
      self.assertAllClose(2 *
                          linalg_ops.eye(num_rows=2, batch_shape=[3]).eval(),
                          operator.to_dense().eval())
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertEqual("my_operator", operator.name)

  def test_identity_plus_scaled_identity(self):
    id1 = linalg.LinearOperatorIdentity(num_rows=2, batch_shape=[3])
    id2 = linalg.LinearOperatorScaledIdentity(num_rows=2, multiplier=2.2)
    hints = linear_operator_addition._Hints(
        is_positive_definite=True, is_non_singular=True)

    self.assertTrue(self._adder.can_add(id1, id2))
    operator = self._adder.add(id1, id2, "my_operator", hints)
    self.assertIsInstance(operator, linalg.LinearOperatorScaledIdentity)

    with self.cached_session():
      self.assertAllClose(3.2 *
                          linalg_ops.eye(num_rows=2, batch_shape=[3]).eval(),
                          operator.to_dense().eval())
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertEqual("my_operator", operator.name)

  def test_scaled_identity_plus_scaled_identity(self):
    id1 = linalg.LinearOperatorScaledIdentity(
        num_rows=2, multiplier=[2.2, 2.2, 2.2])
    id2 = linalg.LinearOperatorScaledIdentity(num_rows=2, multiplier=-1.0)
    hints = linear_operator_addition._Hints(
        is_positive_definite=True, is_non_singular=True)

    self.assertTrue(self._adder.can_add(id1, id2))
    operator = self._adder.add(id1, id2, "my_operator", hints)
    self.assertIsInstance(operator, linalg.LinearOperatorScaledIdentity)

    with self.cached_session():
      self.assertAllClose(1.2 *
                          linalg_ops.eye(num_rows=2, batch_shape=[3]).eval(),
                          operator.to_dense().eval())
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertEqual("my_operator", operator.name)


class AddAndReturnDiagTest(test.TestCase):

  def setUp(self):
    self._adder = linear_operator_addition._AddAndReturnDiag()

  def test_identity_plus_identity_returns_diag(self):
    id1 = linalg.LinearOperatorIdentity(num_rows=2)
    id2 = linalg.LinearOperatorIdentity(num_rows=2, batch_shape=[3])
    hints = linear_operator_addition._Hints(
        is_positive_definite=True, is_non_singular=True)

    self.assertTrue(self._adder.can_add(id1, id2))
    operator = self._adder.add(id1, id2, "my_operator", hints)
    self.assertIsInstance(operator, linalg.LinearOperatorDiag)

    with self.cached_session():
      self.assertAllClose(2 *
                          linalg_ops.eye(num_rows=2, batch_shape=[3]).eval(),
                          operator.to_dense().eval())
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertEqual("my_operator", operator.name)

  def test_diag_plus_diag(self):
    diag1 = rng.rand(2, 3, 4)
    diag2 = rng.rand(4)
    op1 = linalg.LinearOperatorDiag(diag1)
    op2 = linalg.LinearOperatorDiag(diag2)
    hints = linear_operator_addition._Hints(
        is_positive_definite=True, is_non_singular=True)

    self.assertTrue(self._adder.can_add(op1, op2))
    operator = self._adder.add(op1, op2, "my_operator", hints)
    self.assertIsInstance(operator, linalg.LinearOperatorDiag)

    with self.cached_session():
      self.assertAllClose(
          linalg.LinearOperatorDiag(diag1 + diag2).to_dense().eval(),
          operator.to_dense().eval())
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertEqual("my_operator", operator.name)


class AddAndReturnTriLTest(test.TestCase):

  def setUp(self):
    self._adder = linear_operator_addition._AddAndReturnTriL()

  def test_diag_plus_tril(self):
    diag = linalg.LinearOperatorDiag([1., 2.])
    tril = linalg.LinearOperatorLowerTriangular([[10., 0.], [30., 0.]])
    hints = linear_operator_addition._Hints(
        is_positive_definite=True, is_non_singular=True)

    self.assertTrue(self._adder.can_add(diag, diag))
    self.assertTrue(self._adder.can_add(diag, tril))
    operator = self._adder.add(diag, tril, "my_operator", hints)
    self.assertIsInstance(operator, linalg.LinearOperatorLowerTriangular)

    with self.cached_session():
      self.assertAllClose([[11., 0.], [30., 2.]], operator.to_dense().eval())
    self.assertTrue(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)
    self.assertEqual("my_operator", operator.name)


class AddAndReturnMatrixTest(test.TestCase):

  def setUp(self):
    self._adder = linear_operator_addition._AddAndReturnMatrix()

  def test_diag_plus_diag(self):
    diag1 = linalg.LinearOperatorDiag([1., 2.])
    diag2 = linalg.LinearOperatorDiag([-1., 3.])
    hints = linear_operator_addition._Hints(
        is_positive_definite=False, is_non_singular=False)

    self.assertTrue(self._adder.can_add(diag1, diag2))
    operator = self._adder.add(diag1, diag2, "my_operator", hints)
    self.assertIsInstance(operator, linalg.LinearOperatorFullMatrix)

    with self.cached_session():
      self.assertAllClose([[0., 0.], [0., 5.]], operator.to_dense().eval())
    self.assertFalse(operator.is_positive_definite)
    self.assertFalse(operator.is_non_singular)
    self.assertEqual("my_operator", operator.name)


if __name__ == "__main__":
  test.main()