aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/kernel_tests/array_ops_test.py
blob: 6eb9c66d06851cf38cd44d3793794ae0ad0fff0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for array_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

import numpy as np

from tensorflow.python.client import session
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test as test_lib


class BatchMatrixTransposeTest(test_util.TensorFlowTestCase):

  def testNonBatchMatrix(self):
    matrix = [[1, 2, 3], [4, 5, 6]]  # Shape (2, 3)
    expected_transposed = [[1, 4], [2, 5], [3, 6]]  # Shape (3, 2)
    with self.test_session():
      transposed = array_ops.matrix_transpose(matrix)
      self.assertEqual((3, 2), transposed.get_shape())
      self.assertAllEqual(expected_transposed, transposed.eval())

  def testConjugate(self):
    m = [[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]
    expected_transposed = [[1 - 1j, 4 - 4j], [2 - 2j, 5 - 5j], [3 - 3j, 6 - 6j]]
    with self.test_session():
      matrix = ops.convert_to_tensor(m)
      transposed = array_ops.matrix_transpose(matrix, conjugate=True)
      self.assertEqual((3, 2), transposed.get_shape())
      self.assertAllEqual(expected_transposed, transposed.eval())

  def testBatchMatrix(self):
    matrix_0 = [[1, 2, 3], [4, 5, 6]]
    matrix_0_t = [[1, 4], [2, 5], [3, 6]]
    matrix_1 = [[11, 22, 33], [44, 55, 66]]
    matrix_1_t = [[11, 44], [22, 55], [33, 66]]
    batch_matrix = [matrix_0, matrix_1]  # Shape (2, 2, 3)
    expected_transposed = [matrix_0_t, matrix_1_t]  # Shape (2, 3, 2)
    with self.test_session():
      transposed = array_ops.matrix_transpose(batch_matrix)
      self.assertEqual((2, 3, 2), transposed.get_shape())
      self.assertAllEqual(expected_transposed, transposed.eval())

  def testNonBatchMatrixDynamicallyDefined(self):
    matrix = [[1, 2, 3], [4, 5, 6]]  # Shape (2, 3)
    expected_transposed = [[1, 4], [2, 5], [3, 6]]  # Shape (3, 2)
    with self.test_session():
      matrix_ph = array_ops.placeholder(dtypes.int32)
      transposed = array_ops.matrix_transpose(matrix_ph)
      self.assertAllEqual(
          expected_transposed, transposed.eval(feed_dict={matrix_ph: matrix}))

  def testBatchMatrixDynamicallyDefined(self):
    matrix_0 = [[1, 2, 3], [4, 5, 6]]
    matrix_0_t = [[1, 4], [2, 5], [3, 6]]
    matrix_1 = [[11, 22, 33], [44, 55, 66]]
    matrix_1_t = [[11, 44], [22, 55], [33, 66]]
    batch_matrix = [matrix_0, matrix_1]  # Shape (2, 2, 3)
    expected_transposed = [matrix_0_t, matrix_1_t]  # Shape (2, 3, 2)
    with self.test_session():
      batch_matrix_ph = array_ops.placeholder(dtypes.int32)
      transposed = array_ops.matrix_transpose(batch_matrix_ph)
      self.assertAllEqual(
          expected_transposed,
          transposed.eval(feed_dict={batch_matrix_ph: batch_matrix}))

  def testTensorWithStaticRankLessThanTwoRaisesBecauseNotAMatrix(self):
    vector = [1, 2, 3]
    with self.test_session():
      with self.assertRaisesRegexp(ValueError, "should be a "):
        array_ops.matrix_transpose(vector)


class BooleanMaskTest(test_util.TensorFlowTestCase):

  def setUp(self):
    self.rng = np.random.RandomState(42)

  def CheckVersusNumpy(self, ndims_mask, arr_shape, make_mask=None):
    """Check equivalence between boolean_mask and numpy masking."""
    if make_mask is None:
      make_mask = lambda shape: self.rng.randint(0, 2, size=shape).astype(bool)
    arr = np.random.rand(*arr_shape)
    mask = make_mask(arr_shape[:ndims_mask])
    masked_arr = arr[mask]
    with self.test_session():
      masked_tensor = array_ops.boolean_mask(arr, mask)

      # Leading dimension size of masked_tensor is always unknown until runtime
      # since we don't how many elements will be kept.
      self.assertAllEqual(masked_tensor.get_shape()[1:], masked_arr.shape[1:])

      self.assertAllClose(masked_arr, masked_tensor.eval())

  def testMaskDim1ArrDim1(self):
    ndims_mask = 1
    for arr_shape in [(1,), (2,), (3,), (10,)]:
      self.CheckVersusNumpy(ndims_mask, arr_shape)

  def testMaskDim1ArrDim2(self):
    ndims_mask = 1
    for arr_shape in [(1, 1), (2, 2), (2, 5)]:
      self.CheckVersusNumpy(ndims_mask, arr_shape)

  def testMaskDim2ArrDim2(self):
    ndims_mask = 2
    for arr_shape in [(1, 1), (2, 2), (2, 5)]:
      self.CheckVersusNumpy(ndims_mask, arr_shape)

  def testMaskDim2ArrDim3(self):
    ndims_mask = 2
    for arr_shape in [(1, 1, 1), (1, 2, 2), (2, 2, 1)]:
      self.CheckVersusNumpy(ndims_mask, arr_shape)

  def testEmptyInput2D(self):
    mask = np.array([True, False])
    arr = np.array([[], []]).astype(np.float32)
    numpy_result = arr[mask]
    tf_result = array_ops.boolean_mask(arr, mask)
    self.assertAllEqual(numpy_result.shape[1:], tf_result.get_shape()[1:])
    with self.test_session():
      self.assertAllClose(numpy_result, tf_result.eval())

  def testEmptyInput1D(self):
    mask = np.array([]).astype(bool)
    arr = np.array([]).astype(np.float32)
    numpy_result = arr[mask]
    tf_result = array_ops.boolean_mask(arr, mask)
    self.assertAllEqual(numpy_result.shape[1:], tf_result.get_shape()[1:])
    with self.test_session():
      self.assertAllClose(numpy_result, tf_result.eval())

  def testEmptyOutput(self):
    make_mask = lambda shape: np.zeros(shape, dtype=bool)
    for ndims_mask in range(1, 4):
      for ndims_arr in range(ndims_mask, ndims_mask + 3):
        for _ in range(3):
          arr_shape = np.random.randint(1, 5, size=ndims_arr)
          self.CheckVersusNumpy(ndims_mask, arr_shape, make_mask=make_mask)

  def testWorksWithDimensionsEqualToNoneDuringGraphBuild(self):
    # The rank of the mask tensor must be specified. This is explained
    # in the docstring as well.
    with self.test_session() as sess:
      ph_tensor = array_ops.placeholder(dtypes.int32, shape=None)
      ph_mask = array_ops.placeholder(dtypes.bool, shape=[None])

      arr = np.array([[1, 2], [3, 4]])
      mask = np.array([False, True])

      masked_tensor = sess.run(
          array_ops.boolean_mask(ph_tensor, ph_mask),
          feed_dict={ph_tensor: arr,
                     ph_mask: mask})
      np.testing.assert_allclose(masked_tensor, arr[mask])

  def testMaskDimensionsSetToNoneRaises(self):
    # The rank of the mask tensor must be specified. This is explained
    # in the docstring as well.
    with self.test_session():
      tensor = array_ops.placeholder(dtypes.int32, shape=[None, 2])
      mask = array_ops.placeholder(dtypes.bool, shape=None)
      with self.assertRaisesRegexp(ValueError, "dimensions must be specified"):
        array_ops.boolean_mask(tensor, mask)

  def testMaskHasMoreDimsThanTensorRaises(self):
    mask = [[True, True], [False, False]]
    tensor = [1, 2, 3, 4]
    with self.test_session():
      with self.assertRaisesRegexp(ValueError, "incompatible"):
        array_ops.boolean_mask(tensor, mask).eval()

  def testMaskIsScalarRaises(self):
    mask = True
    tensor = 1
    with self.test_session():
      with self.assertRaisesRegexp(ValueError, "mask.*scalar"):
        array_ops.boolean_mask(tensor, mask).eval()

  def testMaskShapeDifferentThanFirstPartOfTensorShapeRaises(self):
    mask = [True, True, True]
    tensor = [[1, 2], [3, 4]]
    with self.test_session():
      with self.assertRaisesRegexp(ValueError, "incompatible"):
        array_ops.boolean_mask(tensor, mask).eval()


class OperatorShapeTest(test_util.TensorFlowTestCase):

  def testExpandScalar(self):
    scalar = "hello"
    scalar_expanded = array_ops.expand_dims(scalar, [0])
    self.assertEqual(scalar_expanded.get_shape(), (1,))

  def testSqueezeScalar(self):
    scalar = "hello"
    scalar_squeezed = array_ops.squeeze(scalar, ())
    self.assertEqual(scalar_squeezed.get_shape(), ())

  def testSqueezeMatrix(self):
    matrix = [[1, 2, 3]]
    matrix_squeezed = array_ops.squeeze(matrix, [0])
    self.assertEqual(matrix_squeezed.get_shape(), (3))

    with self.assertRaises(ValueError):
      matrix_squeezed = array_ops.squeeze(matrix, [1])

  def testSqueezeScalarDim(self):
    matrix = [[1, 2, 3]]
    matrix_squeezed = array_ops.squeeze(matrix, 0)
    self.assertEqual(matrix_squeezed.get_shape(), (3))


class ReverseV2Test(test_util.TensorFlowTestCase):

  def testReverse0DimAuto(self):
    x_np = 4
    for use_gpu in [False, True]:
      with self.test_session(use_gpu=use_gpu):
        x_tf = array_ops.reverse_v2(x_np, []).eval()
        self.assertAllEqual(x_tf, x_np)

  def _reverse1DimAuto(self, np_dtype):
    x_np = np.array([1, 200, 3, 40, 5], dtype=np_dtype)

    for use_gpu in [False, True]:
      with self.test_session(use_gpu=use_gpu):
        x_tf = array_ops.reverse_v2(x_np, [0]).eval()
        self.assertAllEqual(x_tf, np.asarray(x_np)[::-1])

  def _reverse2DimAuto(self, np_dtype):
    x_np = np.array([[1, 200, 3], [4, 5, 60]], dtype=np_dtype)

    for reverse_f in [array_ops.reverse_v2, array_ops.reverse]:
      for use_gpu in [False, True]:
        with self.test_session(use_gpu=use_gpu):
          x_tf_1 = reverse_f(x_np, [0]).eval()
          x_tf_2 = reverse_f(x_np, [-2]).eval()
          x_tf_3 = reverse_f(x_np, [1]).eval()
          x_tf_4 = reverse_f(x_np, [-1]).eval()
          x_tf_5 = reverse_f(x_np, [1, 0]).eval()
          self.assertAllEqual(x_tf_1, np.asarray(x_np)[::-1, :])
          self.assertAllEqual(x_tf_2, np.asarray(x_np)[::-1, :])
          self.assertAllEqual(x_tf_3, np.asarray(x_np)[:, ::-1])
          self.assertAllEqual(x_tf_4, np.asarray(x_np)[:, ::-1])
          self.assertAllEqual(x_tf_5, np.asarray(x_np)[::-1, ::-1])

  # This is the version of reverse that uses axis indices rather than
  # bool tensors
  # TODO(b/32254538): Change this test to use array_ops.reverse
  def testInvalid(self):
    x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
    with self.test_session():
      with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
                                   "is out of valid range"):
        array_ops.reverse_v2(x_np, [-30]).eval()
      with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
                                   "is out of valid range"):
        array_ops.reverse_v2(x_np, [2]).eval()
      with self.assertRaisesRegexp(errors_impl.InvalidArgumentError,
                                   "axis 0 specified more than once"):
        array_ops.reverse_v2(x_np, [0, -2]).eval()

  def testReverse1DimAuto(self):
    for dtype in [
        np.uint8, np.int8, np.uint16, np.int16, np.int32, np.int64,
        np.bool, np.float16, np.float32,
        np.float64, np.complex64, np.complex128,
        np.array(b"").dtype.type
    ]:
      self._reverse1DimAuto(dtype)

  def testReverse2DimAuto(self):
    for dtype in [
        np.uint8, np.int8, np.uint16, np.int16, np.int32, np.int64,
        np.bool, np.float16, np.float32,
        np.float64, np.complex64, np.complex128,
        np.array(b"").dtype.type
    ]:
      self._reverse2DimAuto(dtype)

  def testUnknownDims(self):
    reverse_v2 = array_ops.reverse_v2
    data_t = array_ops.placeholder(dtypes.float32)
    axis_known_t = array_ops.placeholder(dtypes.int32, shape=[3])
    reverse_known_t = reverse_v2(data_t, axis_known_t)
    # Unlike V1 we cannot know this anymore
    self.assertEqual(None, reverse_known_t.get_shape().ndims)

    axis_unknown_t = array_ops.placeholder(dtypes.int32)
    reverse_unknown_t = reverse_v2(data_t, axis_unknown_t)
    self.assertIs(None, reverse_unknown_t.get_shape().ndims)

    data_2d_t = array_ops.placeholder(dtypes.float32, shape=[None, None])
    axis_2d_t = array_ops.placeholder(dtypes.int32, shape=[3])
    reverse_2d_t = reverse_v2(data_2d_t, axis_2d_t)
    self.assertEqual(2, reverse_2d_t.get_shape().ndims)

  def testReverseRowsOf3Channels(self):
    """Tests optimized code for reversing rows with last dim size = 3."""
    with self.test_session(use_gpu=True):
      for reverse_f in [array_ops.reverse_v2, array_ops.reverse]:
        for outer_size in (1, 2):
          for middle_size in list(range(50)) + [100000]:
            x_np = np.reshape(
                np.arange(outer_size * middle_size * 3, dtype=np.float32),
                newshape=(outer_size, middle_size, 3))
            x_tf = reverse_f(x_np, [1]).eval()
            np_answer = x_np[:, ::-1, :]
            self.assertAllEqual(x_tf, np_answer)

  def testReverseRowsOf4Channels(self):
    with self.test_session(use_gpu=True):
      for reverse_f in [array_ops.reverse_v2, array_ops.reverse]:
        for outer_size in (1, 2):
          for middle_size in list(range(50)) + [100000]:
            x_np = np.reshape(
                np.arange(outer_size * middle_size * 4, dtype=np.float32),
                newshape=(outer_size, middle_size, 4))
            x_tf = reverse_f(x_np, [1]).eval()
            np_answer = x_np[:, ::-1, :]
            self.assertAllEqual(x_tf, np_answer)

  def testReverseColumnsOf3Channels(self):
    with self.test_session(use_gpu=True):
      for reverse_f in [array_ops.reverse_v2, array_ops.reverse]:
        for outer_size in list(range(50)) + [100000]:
          for middle_size in (1, 2):
            x_np = np.reshape(
                np.arange(outer_size * middle_size * 3, dtype=np.float32),
                newshape=(outer_size, middle_size, 3))
            x_tf = reverse_f(x_np, [0]).eval()
            np_answer = x_np[::-1, :, :]
            self.assertAllEqual(x_tf, np_answer)


class MeshgridTest(test_util.TensorFlowTestCase):

  def _compareDiff(self, x, y, use_gpu):
    for index in ("ij", "xy"):
      numpy_out = np.meshgrid(x, y, indexing=index)
      tf_out = array_ops.meshgrid(x, y, indexing=index)
      with self.test_session(use_gpu=use_gpu):
        for xx, yy in zip(numpy_out, tf_out):
          self.assertAllEqual(xx, yy.eval())

  def _compareDiffType(self, n, np_dtype, use_gpu):
    inputs = []
    for index in ("ij", "xy"):
      for i in range(n):
        x = np.linspace(-10, 10, 5).astype(np_dtype)
        if np_dtype in (np.complex64, np.complex128):
          x += 1j
        inputs.append(x)
      numpy_out = np.meshgrid(*inputs, indexing=index)
      with self.test_session(use_gpu=use_gpu):
        tf_out = array_ops.meshgrid(*inputs, indexing=index)
        for X, _X in zip(numpy_out, tf_out):
          self.assertAllEqual(X, _X.eval())

  def testCompare(self):
    for t in (np.float16, np.float32, np.float64, np.int32, np.int64,
              np.complex64, np.complex128):
      self._compareDiffType(2, t, False)
      self._compareDiffType(3, t, False)

      x = [1, 2, 3]
      y = [4, 5]

      a = [[1, 1], [1, 1]]

      self._compareDiff(x, y, False)
      self._compareDiff(x, a, False)


class StridedSliceChecker(object):
  """Check a given tensor against the numpy result."""

  REF_TENSOR = np.arange(1, 19, dtype=np.float32).reshape(3, 2, 3)
  REF_TENSOR_ALIGNED = np.arange(1, 97, dtype=np.float32).reshape(3, 4, 8)

  def __init__(self, test, x, tensor_type=dtypes.int32, check_type_infer=True):
    self.x_np = np.array(x).astype(tensor_type.as_numpy_dtype)
    # Give the value a non-zero imaginary component for complex types.
    if tensor_type.is_complex:
      self.x_np -= 1j * self.x_np
    self.test = test
    self.x = constant_op.constant(self.x_np, dtype=tensor_type)
    self.check_type_infer = check_type_infer

  def __getitem__(self, spec):
    op = self.x.__getitem__(spec)
    if not isinstance(spec, (list, tuple)):
      spec = [spec]

    tensor = op.eval()

    # Make a numpy spec that pre-evals the tensors
    np_specs = []

    def eval_if_tensor(x):
      try:
        return x.eval()
      except AttributeError:
        return x

    for s in spec:
      if isinstance(s, slice):
        start = eval_if_tensor(s.start)
        stop = eval_if_tensor(s.stop)
        step = eval_if_tensor(s.step)
        np_specs.append(slice(start, stop, step))
      else:
        np_specs.append(eval_if_tensor(s))

    self.test.assertAllEqual(self.x_np[tuple(np_specs)], tensor)
    if self.check_type_infer:
      self.test.assertAllEqual(tensor.shape, op.get_shape())
    return tensor


STRIDED_SLICE_TYPES = [
    dtypes.int32, dtypes.int64, dtypes.int16, dtypes.int8, dtypes.float32,
    dtypes.float64, dtypes.complex64, dtypes.complex128
]


class StridedSliceTest(test_util.TensorFlowTestCase):
  """Test the strided slice operation with variants of slices."""

  def test_basic_slice(self):
    for tensor_type in STRIDED_SLICE_TYPES:
      with self.test_session(use_gpu=True):
        checker = StridedSliceChecker(
            self, StridedSliceChecker.REF_TENSOR, tensor_type=tensor_type)
        _ = checker[:, :, :]
        # Various ways of representing identity slice
        _ = checker[:, :, :]
        _ = checker[::, ::, ::]
        _ = checker[::1, ::1, ::1]
        # Not zero slice
        _ = checker[::1, ::5, ::2]
        # Reverse in each dimension independently
        _ = checker[::-1, :, :]
        _ = checker[:, ::-1, :]
        _ = checker[:, :, ::-1]
        ## negative index tests i.e. n-2 in first component
        _ = checker[-2::-1, :, ::1]
        # negative index tests i.e. n-2 in first component, non-unit stride
        _ = checker[-2::-1, :, ::2]

        # Check rank-0 examples
        checker2 = StridedSliceChecker(self, 5, tensor_type=tensor_type)
        _ = checker2[None]
        _ = checker2[...]
        _ = checker2[tuple()]

  def testFloatSlicedArrayAndInt64IndicesGPU(self):
    if not test_util.is_gpu_available():
      self.skipTest("No GPU available")
    with self.test_session(use_gpu=True, force_gpu=True):
      x = constant_op.constant([1., 2., 3.])
      begin = constant_op.constant([2], dtype=dtypes.int64)
      end = constant_op.constant([3], dtype=dtypes.int64)
      strides = constant_op.constant([1], dtype=dtypes.int64)
      s = array_ops.strided_slice(x, begin, end, strides)
      self.assertAllEqual([3.], self.evaluate(s))

  def testInt64SlicedArrayAndIndicesGPU(self):
    if not test_util.is_gpu_available():
      self.skipTest("No GPU available")
    with self.test_session(use_gpu=True, force_gpu=True):
      x = constant_op.constant([1, 2, 3], dtype=dtypes.int64)
      begin = constant_op.constant([2], dtype=dtypes.int64)
      end = constant_op.constant([3], dtype=dtypes.int64)
      strides = constant_op.constant([1], dtype=dtypes.int64)
      s = array_ops.strided_slice(x, begin, end, strides)
      self.assertAllEqual([3], self.evaluate(s))

  def testDegenerateSlices(self):
    with self.test_session(use_gpu=True):
      checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR)
      # degenerate by offering a forward interval with a negative stride
      _ = checker[0:-1:-1, :, :]
      # degenerate with a reverse interval with a positive stride
      _ = checker[-1:0, :, :]
      # empty interval in every dimension
      _ = checker[-1:0, 2:2, 2:3:-1]

  def testEllipsis(self):
    with self.test_session(use_gpu=True):
      raw = [[[[[1, 2], [3, 4], [5, 6]]], [[[7, 8], [9, 10], [11, 12]]]]]
      checker = StridedSliceChecker(self, raw)

      _ = checker[0:]
      # implicit ellipsis
      _ = checker[0:, ...]
      # ellipsis alone
      _ = checker[...]
      # ellipsis at end
      _ = checker[0:1, ...]
      # ellipsis at begin
      _ = checker[..., 0:1]
      # ellipsis at middle
      _ = checker[0:1, ..., 0:1]
      # multiple ellipses not allowed
      with self.assertRaisesRegexp(ValueError, "Multiple ellipses"):
        _ = checker[..., :, ...].eval()

  def testShrink(self):
    with self.test_session(use_gpu=True):
      raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]],
              [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]]
      checker = StridedSliceChecker(self, raw)
      _ = checker[:, :, :, :, 3]
      _ = checker[..., 3]
      _ = checker[:, 0]
      _ = checker[:, :, 0]

  def testTensorIndexing(self):
    with self.test_session(use_gpu=True):
      raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]],
              [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]]
      checker = StridedSliceChecker(self, raw, check_type_infer=False)
      bar = constant_op.constant(2)
      bar2 = constant_op.constant(3)
      _ = checker[..., bar:bar2]
      _ = checker[..., bar]
      with self.assertRaisesRegexp(
          TypeError,
          "Value passed to parameter 'begin' has DataType float32 not in "
          "list of allowed values"):
        _ = checker[..., 3.0]
      _ = checker[..., 3]

  def testExpand(self):
    with self.test_session(use_gpu=True):
      raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]],
              [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]]
      checker = StridedSliceChecker(self, raw)
      # new axis (followed by implicit ellipsis)
      _ = checker[np.newaxis]
      # newaxis after ellipsis
      _ = checker[..., np.newaxis]
      # newaxis in between ellipsis and explicit range
      _ = checker[..., np.newaxis, :]
      _ = checker[:, ..., np.newaxis, :, :]
      # Reverse final dimension with new axis
      _ = checker[:, :, np.newaxis, :, 2::-1]
      # Ellipsis in middle of two newaxis
      _ = checker[np.newaxis, ..., np.newaxis]

  def testExpandVariable(self):
    with self.test_session(use_gpu=True):
      x = variables.Variable(7, dtype=dtypes.int32)
      x.initializer.run()
      y = x[None].eval()
      self.assertEqual(y.shape, (1,))
      self.assertAllEqual(y, (7,))

  def testOptimizedCases(self):
    with self.test_session(use_gpu=True):
      checker = StridedSliceChecker(self,
                                    StridedSliceChecker.REF_TENSOR_ALIGNED)
      # Identity
      _ = checker[:]
      # Identity
      _ = checker[...]
      # Identity
      _ = checker[np.newaxis, ..., np.newaxis]
      # First axis slice
      _ = checker[1:]
      # First axis slice
      _ = checker[np.newaxis, 1:]


class StridedSliceShapeChecker(object):

  def __init__(self, x):
    self.x = x

  def __getitem__(self, spec):
    op = self.x.__getitem__(spec)
    return op.get_shape()


class StridedSliceShapeTest(test_util.TensorFlowTestCase):
  """Test the shape inference of StridedSliceShapes."""

  def testUnknown(self):
    with self.test_session(use_gpu=True):
      uncertain_tensor = array_ops.placeholder(dtypes.float32)
      a = StridedSliceShapeChecker(uncertain_tensor)
      a_slice_shape = a[...]
      self.assertAllEqual(a_slice_shape.ndims, None)

  def tensorShapeEqual(self, x, y):
    self.assertTrue(x is not None and y is not None or x is None and y is None)
    self.assertEqual(x.as_list(), y.as_list())

  def testTensorShapeUncertain(self):
    with self.test_session(use_gpu=True):
      uncertain_tensor = array_ops.placeholder(
          dtypes.float32, shape=(5, None, 7))
      a = StridedSliceShapeChecker(uncertain_tensor)
      self.tensorShapeEqual(a[3:5], tensor_shape.TensorShape([2, None, 7]))
      self.tensorShapeEqual(a[3:5, :, 4], tensor_shape.TensorShape([2, None]))
      self.tensorShapeEqual(a[3:5, 3:4, 4], tensor_shape.TensorShape([2, None]))
      self.tensorShapeEqual(a[3:5, :, 5:10],
                            tensor_shape.TensorShape([2, None, 2]))
      self.tensorShapeEqual(a[3:5, :, 50:3],
                            tensor_shape.TensorShape([2, None, 0]))
      self.tensorShapeEqual(a[3:5, :, array_ops.newaxis, 50:3,],
                            tensor_shape.TensorShape([2, None, 1, 0]))
      self.tensorShapeEqual(a[1:5:2, :, array_ops.newaxis, 50:3,],
                            tensor_shape.TensorShape([2, None, 1, 0]))
      self.tensorShapeEqual(a[:5:3, :, array_ops.newaxis, 50:3,],
                            tensor_shape.TensorShape([2, None, 1, 0]))
      self.tensorShapeEqual(a[:2:3, :, array_ops.newaxis, 50:3,],
                            tensor_shape.TensorShape([1, None, 1, 0]))
      self.tensorShapeEqual(a[::-1, :, array_ops.newaxis, ::-2],
                            tensor_shape.TensorShape([5, None, 1, 4]))

  def testTensorValuedIndexShape(self):
    with self.test_session(use_gpu=True):
      defined_shape_tensor = array_ops.placeholder(
          dtypes.float32, shape=(5, 3, 7))
      index_value = array_ops.placeholder(dtypes.int32, shape=())
      a = StridedSliceShapeChecker(defined_shape_tensor)
      self.tensorShapeEqual(a[index_value], tensor_shape.TensorShape([3, 7]))
      self.tensorShapeEqual(a[index_value, ::-1],
                            tensor_shape.TensorShape([3, 7]))
      self.tensorShapeEqual(a[index_value, ::-2],
                            tensor_shape.TensorShape([2, 7]))
      other_scalar = array_ops.placeholder(dtypes.int32, shape=())
      self.tensorShapeEqual(a[index_value, other_scalar:2],
                            tensor_shape.TensorShape([None, 7]))


class GradSliceChecker(object):
  """Tests that we can compute a gradient for var^2."""

  def __init__(self, test, sess, var, varnp):
    self.test = test
    self.sess = sess
    self.val = var * var
    self.var = var
    self.varnp = varnp

  def __getitem__(self, spec):
    slice_var = self.var[spec]
    slice_val = self.val[spec]

    # compute analytic 2nd derivative
    analytic_grad2 = 2 * slice_val

    dy = variables.Variable(
        array_ops.ones(shape=slice_var.get_shape(), dtype=dtypes.int32))
    assign = dy.assign(slice_var)
    slice_val_grad, = gradients_impl.gradients(slice_val, self.var, grad_ys=dy)
    slice_val_grad2, = gradients_impl.gradients(
        slice_val_grad, dy, grad_ys=self.var)
    self.sess.run(assign)
    slice_val_grad_evaled, slice_val_grad2_evaled = (self.sess.run(
        [slice_val_grad, slice_val_grad2]))
    analytic_grad2_evaled = analytic_grad2.eval()
    self.test.assertAllEqual(slice_val_grad2_evaled, analytic_grad2_evaled)

    # compute analytic gradient for slice
    np_val_grad = (2 * self.varnp * self.varnp)
    np_sliceval_grad = np.zeros(self.var.get_shape())
    np_sliceval_grad[spec] = np_val_grad[spec]
    # verify gradient
    self.test.assertAllEqual(slice_val_grad_evaled, np_sliceval_grad)


class StridedSliceGradTest(test_util.TensorFlowTestCase):
  """Test that strided slice's custom gradient produces correct gradients."""

  def testGradient(self):
    with self.test_session(use_gpu=True) as sess:
      var = variables.Variable(
          array_ops.reshape(math_ops.range(1, 97, 1), shape=(6, 4, 4)))
      init = variables.global_variables_initializer()
      sess.run(init)

      grad = GradSliceChecker(self, sess, var,
                              np.array(range(1, 97, 1)).reshape((6, 4, 4)))
      _ = grad[2:6:2, 1:3, 1:3]
      _ = grad[3:0:-2, 1:3, 1:3]
      _ = grad[3:0:-2, array_ops.newaxis, 1:3, 2, array_ops.newaxis]
      _ = grad[3:0:-2, 1:3, 2]
      _ = grad[:, -1, :]
      _ = grad[:, -2, :]
      with self.assertRaisesRegexp(ValueError, "out of bounds"):
        _ = grad[:, -200, :]
      with self.assertRaisesRegexp(ValueError, "out of bounds"):
        _ = grad[:, 200, :]

  def testGradientZero(self):
    with self.test_session(use_gpu=True) as sess:
      var = variables.Variable(8)
      init = variables.global_variables_initializer()
      sess.run(init)
      grad = GradSliceChecker(self, sess, var, np.array(8))
      _ = grad[tuple()]


class StridedSliceGradTypeTest(test_util.TensorFlowTestCase):
  """Test varied index types and host located memory."""

  def testHostVsDevice(self):
    with self.test_session(use_gpu=True) as sess:
      var2 = variables.Variable(
          array_ops.reshape(
              math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32),
              shape=(4, 1, 1)))
      varshape = variables.Variable([6, 4, 4], dtype=dtypes.int32)
      sess.run(variables.global_variables_initializer())
      begin = constant_op.constant([0, 0, 0])
      end = constant_op.constant([4, 1, 1])
      strides = constant_op.constant([1, 1, 1])
      foo = array_ops.strided_slice_grad(varshape, begin, end, strides, var2)
      sess.run(foo)

  def testInt64Shape(self):
    with self.test_session(use_gpu=True) as sess:
      original_dy = array_ops.reshape(
          math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32),
          shape=(4, 1, 1))
      original_shape = constant_op.constant([6, 4, 4], dtype=dtypes.int64)
      sess.run(variables.global_variables_initializer())
      begin = constant_op.constant([0, 0, 0], dtype=dtypes.int64)
      end = constant_op.constant([4, 1, 1], dtype=dtypes.int64)
      strides = constant_op.constant([1, 1, 1], dtype=dtypes.int64)
      dx = array_ops.strided_slice_grad(original_shape, begin, end, strides,
                                        original_dy)
      sess.run(dx)

  def testMixedIndexTypes(self):
    with self.test_session(use_gpu=True) as sess:
      original_dy = array_ops.reshape(
          math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32),
          shape=(4, 1, 1))
      original_shape = constant_op.constant([6, 4, 4], dtype=dtypes.int64)
      sess.run(variables.global_variables_initializer())
      begin = constant_op.constant([0, 0, 0], dtype=dtypes.int32)
      end = constant_op.constant([4, 1, 1], dtype=dtypes.int64)
      strides = constant_op.constant([1, 1, 1], dtype=dtypes.int64)
      with self.assertRaisesRegexp(
          TypeError, "Input 'begin' of 'StridedSliceGrad' Op has type int32"
          " that does not match type int64 of argument 'shape'"):
        dx = array_ops.strided_slice_grad(original_shape, begin, end, strides,
                                          original_dy)
        sess.run(dx)


class BenchmarkSlice(object):

  def __init__(self, tensor):
    self.tensor = tensor

  def __getitem__(self, x):
    return self.tensor[x]


class StridedSliceBenchmark(test_lib.Benchmark):
  """Benchmark new strided slice operation on non-trivial case."""

  def run_and_time(self, slice_op):
    variables.global_variables_initializer().run()
    for _ in range(10):
      _ = slice_op.eval()
    iters = 1000
    t0 = time.time()
    for _ in range(iters):
      slice_op.eval()
    t1 = time.time()
    self.report_benchmark(iters=iters, wall_time=(t1 - t0) / 1000.0)

  def make_variable(self):
    n = 256
    shape = (n, n, n)
    items = n**3
    var = variables.Variable(
        array_ops.reshape(math_ops.linspace(1., float(items), items), shape),
        dtype=dtypes.float32)
    return var

  def benchmark_strided_slice_skip(self):
    with session.Session():
      var = self.make_variable()
      helper = BenchmarkSlice(var)
      slice_op = helper[::2, ::1, ::2]
      self.run_and_time(slice_op)

  def benchmark_strided_slice_easy(self):
    with session.Session():
      var = self.make_variable()
      helper = BenchmarkSlice(var)
      slice_op = helper[3::1, 3::1, 3::1]
      self.run_and_time(slice_op)

  def benchmark_slice_easy(self):
    with session.Session():
      var = self.make_variable()
      slice_op = var[3::1, 3::1, 3::1]
      self.run_and_time(slice_op)


class StridedSliceAssignChecker(object):

  def __init__(self, test, x, tensor_type=dtypes.float32, use_resource=False):
    self.tensor_type = tensor_type
    self.test = test
    self._use_resource = use_resource

    self.x_np = np.array(x).astype(tensor_type.as_numpy_dtype)
    # Give the value a non-zero imaginary component for complex types.
    if tensor_type.is_complex:
      self.x_np -= 1j * self.x_np
    self.x = constant_op.constant(self.x_np, dtype=tensor_type)

  def __setitem__(self, index, value):
    value = np.array(value).astype(self.tensor_type.as_numpy_dtype)
    # Give the value a non-zero imaginary component for complex types.
    if self.tensor_type.is_complex:
      value -= 1j * value

    with self.test.test_session(use_gpu=True) as sess:
      if self._use_resource:
        var = resource_variable_ops.ResourceVariable(self.x)
      else:
        var = variables.Variable(self.x)
      sess.run(variables.initialize_variables([var]))
      val = sess.run(var[index].assign(value))
      # val_copy is used to check that tf.assign works equivalently to the
      # assign method above.
      val_copy = sess.run(state_ops.assign(var[index], value))
      valnp = np.copy(self.x_np)
      valnp[index] = np.array(value)
      self.test.assertAllEqual(val, valnp)
      self.test.assertAllEqual(val_copy, valnp)


class SliceAssignTest(test_util.TensorFlowTestCase):

  def testInvalidSlice(self):
    with self.test_session() as sess:
      foo = constant_op.constant([1, 2, 3])
      with self.assertRaisesRegexp(ValueError, "Sliced assignment"
                                   " is only supported for variables"):
        bar = foo[:2].assign(constant_op.constant([1, 2]))
        sess.run(bar)

  def doTestSliceAssign(self, use_resource):
    for dtype in STRIDED_SLICE_TYPES:
      checker = StridedSliceAssignChecker(
          self, [[1, 2, 3], [4, 5, 6]],
          use_resource=use_resource,
          tensor_type=dtype)
      # Check if equal
      checker[:] = [[10, 20, 30], [40, 50, 60]]
      # Check trivial (1,1) shape tensor
      checker[1:2, 1:2] = [[66]]
      # shrinks shape changes
      checker[1:2, 1] = [66]
      checker[1, 1:2] = [66]
      checker[1, 1] = 66
      # newaxis shape changes
      checker[:, None, :] = [[[10, 20, 30]], [[40, 50, 50]]]
      # shrink and newaxis
      checker[None, None, 0, 0:1] = [[[99]]]
      # Non unit strides
      checker[::1, ::-2] = [[3, 33], [4, 44]]
      # degenerate interval
      checker[8:10, 0] = []
      checker[8:10, 8:10] = [[]]
    # Assign vector to scalar (rank-0) using newaxis
    checker2 = StridedSliceAssignChecker(self, 222)
    checker2[()] = 6  # no indices
    checker2[...] = 6  # ellipsis
    checker2[None] = [6]  # new axis

  def testSliceAssign(self):
    self.doTestSliceAssign(use_resource=False)

  def testSliceAssignResource(self):
    self.doTestSliceAssign(use_resource=True)

  def testUninitialized(self):
    with self.assertRaisesRegexp(
        errors.FailedPreconditionError,
        "Attempting to use uninitialized value Variable"):
      with self.test_session() as sess:
        v = variables.Variable([1, 2])
        sess.run(v[:].assign([1, 2]))


class ShapeSizeRankTest(test_util.TensorFlowTestCase):

  def testDenseShape(self):
    with self.test_session():
      t_value = [[0, 42], [24, 0]]
      self.assertAllEqual((2, 2), array_ops.shape(t_value).eval())
      self.assertEqual(4, array_ops.size(t_value).eval())
      self.assertEqual(2, array_ops.rank(t_value).eval())

      t = constant_op.constant(t_value)
      self.assertAllEqual((2, 2), array_ops.shape(t).eval())
      self.assertEqual(4, array_ops.size(t).eval())
      self.assertEqual(2, array_ops.rank(t).eval())

  def testSparseShape(self):
    with self.test_session():
      sp_value = sparse_tensor.SparseTensorValue(
          indices=((0, 1), (1, 0)), values=(42, 24), dense_shape=(2, 2))
      self.assertAllEqual((2, 2), array_ops.shape(sp_value).eval())
      self.assertEqual(4, array_ops.size(sp_value).eval())
      self.assertEqual(2, array_ops.rank(sp_value).eval())

      sp = sparse_tensor.SparseTensor.from_value(sp_value)
      self.assertAllEqual((2, 2), array_ops.shape(sp).eval())
      self.assertEqual(4, array_ops.size(sp).eval())
      self.assertEqual(2, array_ops.rank(sp).eval())


class SequenceMaskTest(test_util.TensorFlowTestCase):

  def testExceptions(self):
    with self.test_session():
      with self.assertRaisesRegexp(ValueError, "maxlen must be scalar"):
        array_ops.sequence_mask([10, 20], [10, 20])

  def testOneDimensional(self):
    with self.test_session():
      res = array_ops.sequence_mask(constant_op.constant([1, 3, 2]), 5)
      self.assertAllEqual(res.get_shape(), [3, 5])
      self.assertAllEqual(res.eval(), [[True, False, False, False, False],
                                       [True, True, True, False, False],
                                       [True, True, False, False, False]])

      # test dtype and default maxlen:
      res = array_ops.sequence_mask(
          constant_op.constant([0, 1, 4]), dtype=dtypes.float32)
      self.assertAllEqual(res.get_shape().as_list(), [3, None])
      self.assertAllEqual(res.eval(), [[0.0, 0.0, 0.0,
                                        0.0], [1.0, 0.0, 0.0, 0.0],
                                       [1.0, 1.0, 1.0, 1.0]])

  def testTwoDimensional(self):
    with self.test_session():
      res = array_ops.sequence_mask(constant_op.constant([[1, 3, 2]]), 5)
      self.assertAllEqual(res.get_shape(), [1, 3, 5])
      self.assertAllEqual(res.eval(), [[[True, False, False, False, False],
                                        [True, True, True, False, False],
                                        [True, True, False, False, False]]])

      # test dtype and default maxlen:
      res = array_ops.sequence_mask(
          constant_op.constant([[0, 1, 4], [1, 2, 3]]), dtype=dtypes.float32)
      self.assertAllEqual(res.get_shape().as_list(), [2, 3, None])
      self.assertAllEqual(res.eval(), [[[0.0, 0.0, 0.0, 0.0],
                                        [1.0, 0.0, 0.0, 0.0],
                                        [1.0, 1.0, 1.0, 1.0]],
                                       [[1.0, 0.0, 0.0, 0.0],
                                        [1.0, 1.0, 0.0, 0.0],
                                        [1.0, 1.0, 1.0, 0.0]]])

  def testDtypes(self):

    def check_dtypes(lengths_dtype, maxlen_dtype):
      res = array_ops.sequence_mask(
          constant_op.constant([1, 3, 2], dtype=lengths_dtype),
          constant_op.constant(5, dtype=maxlen_dtype))
      self.assertAllEqual(res.get_shape(), [3, 5])
      self.assertAllEqual(res.eval(), [[True, False, False, False, False],
                                       [True, True, True, False, False],
                                       [True, True, False, False, False]])

    with self.test_session():
      check_dtypes(dtypes.int32, dtypes.int32)
      check_dtypes(dtypes.int32, dtypes.int64)
      check_dtypes(dtypes.int64, dtypes.int32)
      check_dtypes(dtypes.int64, dtypes.int64)


class ConcatSliceResourceTest(test_util.TensorFlowTestCase):

  @test_util.run_in_graph_and_eager_modes()
  def testConcatSlice(self):
    r1 = test_ops.stub_resource_handle_op(container="a", shared_name="b")
    r2 = test_ops.stub_resource_handle_op(container="a", shared_name="c")
    c = array_ops.stack([r1, r2])
    s = array_ops.strided_slice(c, [1], [2])
    self.evaluate(test_ops.resource_create_op(s))
    with self.assertRaises(errors.AlreadyExistsError):
      self.evaluate(test_ops.resource_create_op(r2))


class IdentityTest(test_util.TensorFlowTestCase):

  def testEagerIdentity(self):
    with context.eager_mode():
      ctx = context.get_default_context()
      if not ctx.num_gpus():
        self.skipTest("No GPUs found")

      def _test(x, y, device):
        self.assertAllEqual(x.numpy(), y.numpy())
        self.assertTrue(device in y.device.lower())

      with ops.device("gpu:0"):
        a = constant_op.constant([[2], [3]], dtype=dtypes.float32)
      with ops.device("gpu:0"):
        b = array_ops.identity(a)
        _test(a, b, "gpu")
      with ops.device("cpu:0"):
        c = array_ops.identity(b)
        _test(b, c, "cpu")
      with ops.device("cpu:0"):
        d = array_ops.identity(c)
        _test(c, d, "cpu")
      with ops.device("gpu:0"):
        e = array_ops.identity(d)
        _test(d, e, "gpu")


class PadTest(test_util.TensorFlowTestCase):

  def testEager(self):
    with context.eager_mode():
      t = constant_op.constant([[1, 2, 3], [4, 5, 6]])
      paddings = constant_op.constant([[1, 1,], [2, 2]])
      padded = array_ops.pad(t, paddings, "CONSTANT")
      self.assertAllEqual(padded.numpy(),
                          [[0, 0, 0, 0, 0, 0, 0],
                           [0, 0, 1, 2, 3, 0, 0],
                           [0, 0, 4, 5, 6, 0, 0],
                           [0, 0, 0, 0, 0, 0, 0]])


if __name__ == "__main__":
  test_lib.main()