aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/utils/layer_utils.py
blob: 158a9a5e76d214eef1f853f964aafe00b030b112 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Utilities related to layer/model functionality.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.keras import backend as K
from tensorflow.python.keras.utils.conv_utils import convert_kernel
from tensorflow.python.util.tf_export import tf_export


@tf_export('keras.utils.get_source_inputs')
def get_source_inputs(tensor, layer=None, node_index=None):
  """Returns the list of input tensors necessary to compute `tensor`.

  Output will always be a list of tensors
  (potentially with 1 element).

  Arguments:
      tensor: The tensor to start from.
      layer: Origin layer of the tensor. Will be
          determined via tensor._keras_history if not provided.
      node_index: Origin node index of the tensor.

  Returns:
      List of input tensors.
  """
  if not hasattr(tensor, '_keras_history'):
    return tensor

  if layer is None or node_index:
    layer, node_index, _ = tensor._keras_history
  if not layer._inbound_nodes:
    return [tensor]
  else:
    node = layer._inbound_nodes[node_index]
    if not node.inbound_layers:
      # Reached an Input layer, stop recursion.
      return node.input_tensors
    else:
      source_tensors = []
      for i in range(len(node.inbound_layers)):
        x = node.input_tensors[i]
        layer = node.inbound_layers[i]
        node_index = node.node_indices[i]
        previous_sources = get_source_inputs(x, layer, node_index)
        # Avoid input redundancy.
        for x in previous_sources:
          if x not in source_tensors:
            source_tensors.append(x)
      return source_tensors


def count_params(weights):
  """Count the total number of scalars composing the weights.

  Arguments:
      weights: An iterable containing the weights on which to compute params

  Returns:
      The total number of scalars composing the weights
  """
  return int(np.sum([np.prod(p.get_shape().as_list()) for p in set(weights)]))


def print_summary(model, line_length=None, positions=None, print_fn=None):
  """Prints a summary of a model.

  Arguments:
      model: Keras model instance.
      line_length: Total length of printed lines
          (e.g. set this to adapt the display to different
          terminal window sizes).
      positions: Relative or absolute positions of log elements in each line.
          If not provided, defaults to `[.33, .55, .67, 1.]`.
      print_fn: Print function to use.
          It will be called on each line of the summary.
          You can set it to a custom function
          in order to capture the string summary.
          It defaults to `print` (prints to stdout).
  """
  if print_fn is None:
    print_fn = print

  if model.__class__.__name__ == 'Sequential':
    sequential_like = True
  elif not model._is_graph_network:
    # We treat subclassed models as a simple sequence of layers, for logging
    # purposes.
    sequential_like = True
  else:
    sequential_like = True
    nodes_by_depth = model._nodes_by_depth.values()
    nodes = []
    for v in nodes_by_depth:
      if (len(v) > 1) or (len(v) == 1 and len(v[0].inbound_layers) > 1):
        # if the model has multiple nodes
        # or if the nodes have multiple inbound_layers
        # the model is no longer sequential
        sequential_like = False
        break
      nodes += v
    if sequential_like:
      # search for shared layers
      for layer in model.layers:
        flag = False
        for node in layer._inbound_nodes:
          if node in nodes:
            if flag:
              sequential_like = False
              break
            else:
              flag = True
        if not sequential_like:
          break

  if sequential_like:
    line_length = line_length or 65
    positions = positions or [.45, .85, 1.]
    if positions[-1] <= 1:
      positions = [int(line_length * p) for p in positions]
    # header names for the different log elements
    to_display = ['Layer (type)', 'Output Shape', 'Param #']
  else:
    line_length = line_length or 98
    positions = positions or [.33, .55, .67, 1.]
    if positions[-1] <= 1:
      positions = [int(line_length * p) for p in positions]
    # header names for the different log elements
    to_display = ['Layer (type)', 'Output Shape', 'Param #', 'Connected to']
    relevant_nodes = []
    for v in model._nodes_by_depth.values():
      relevant_nodes += v

  def print_row(fields, positions):
    line = ''
    for i in range(len(fields)):
      if i > 0:
        line = line[:-1] + ' '
      line += str(fields[i])
      line = line[:positions[i]]
      line += ' ' * (positions[i] - len(line))
    print_fn(line)

  print_fn('_' * line_length)
  print_row(to_display, positions)
  print_fn('=' * line_length)

  def print_layer_summary(layer):
    """Prints a summary for a single layer.

    Arguments:
        layer: target layer.
    """
    try:
      output_shape = layer.output_shape
    except AttributeError:
      output_shape = 'multiple'
    except RuntimeError:  # output_shape unknown in Eager mode.
      output_shape = '?'
    name = layer.name
    cls_name = layer.__class__.__name__
    fields = [name + ' (' + cls_name + ')', output_shape, layer.count_params()]
    print_row(fields, positions)

  def print_layer_summary_with_connections(layer):
    """Prints a summary for a single layer (including topological connections).

    Arguments:
        layer: target layer.
    """
    try:
      output_shape = layer.output_shape
    except AttributeError:
      output_shape = 'multiple'
    connections = []
    for node in layer._inbound_nodes:
      if relevant_nodes and node not in relevant_nodes:
        # node is not part of the current network
        continue
      for i in range(len(node.inbound_layers)):
        inbound_layer = node.inbound_layers[i].name
        inbound_node_index = node.node_indices[i]
        inbound_tensor_index = node.tensor_indices[i]
        connections.append(inbound_layer + '[' + str(inbound_node_index) +
                           '][' + str(inbound_tensor_index) + ']')

    name = layer.name
    cls_name = layer.__class__.__name__
    if not connections:
      first_connection = ''
    else:
      first_connection = connections[0]
    fields = [
        name + ' (' + cls_name + ')', output_shape,
        layer.count_params(), first_connection
    ]
    print_row(fields, positions)
    if len(connections) > 1:
      for i in range(1, len(connections)):
        fields = ['', '', '', connections[i]]
        print_row(fields, positions)

  layers = model.layers
  for i in range(len(layers)):
    if sequential_like:
      print_layer_summary(layers[i])
    else:
      print_layer_summary_with_connections(layers[i])
    if i == len(layers) - 1:
      print_fn('=' * line_length)
    else:
      print_fn('_' * line_length)

  model._check_trainable_weights_consistency()
  if hasattr(model, '_collected_trainable_weights'):
    trainable_count = count_params(model._collected_trainable_weights)
  else:
    trainable_count = count_params(model.trainable_weights)

  non_trainable_count = count_params(model.non_trainable_weights)

  print_fn('Total params: {:,}'.format(trainable_count + non_trainable_count))
  print_fn('Trainable params: {:,}'.format(trainable_count))
  print_fn('Non-trainable params: {:,}'.format(non_trainable_count))
  print_fn('_' * line_length)


def gather_trainable_weights(trainable, sub_layers, extra_variables):
  """Lists the trainable weights for an object with sub-layers.

  Args:
    trainable: Whether the object collecting the variables is trainable.
    sub_layers: A flat list of Layer objects owned by this object, to collect
      variables from.
    extra_variables: Any extra variables to include. Their `.trainable` property
      is used to categorize them.

  Returns:
    A list of collected trainable weights/variables.
  """
  if not trainable:
    return []
  weights = []
  for layer in sub_layers:
    weights += layer.trainable_weights
  trainable_extra_variables = [
      v for v in extra_variables if v.trainable]
  return weights + trainable_extra_variables


def gather_non_trainable_weights(trainable, sub_layers, extra_variables):
  """Lists the non-trainable weights for an object with sub-layers.

  Args:
    trainable: Whether the object collecting the variables is trainable.
    sub_layers: A flat list of Layer objects owned by this object, to collect
      variables from.
    extra_variables: Any extra variables to include. Their `.trainable` property
      is used to categorize them.

  Returns:
    A list of collected non-trainable weights/variables.
  """
  trainable_extra_variables = []
  non_trainable_extra_variables = []
  for v in extra_variables:
    if v.trainable:
      trainable_extra_variables.append(v)
    else:
      non_trainable_extra_variables.append(v)
  weights = []
  for layer in sub_layers:
    weights += layer.non_trainable_weights
  if not trainable:
    trainable_weights = []
    for layer in sub_layers:
      trainable_weights += layer.trainable_weights
    return (trainable_weights + trainable_extra_variables
            + weights + non_trainable_extra_variables)
  return weights + non_trainable_extra_variables


@tf_export('keras.utils.convert_all_kernels_in_model')
def convert_all_kernels_in_model(model):
  """Converts all convolution kernels in a model from Theano to TensorFlow.

  Also works from TensorFlow to Theano.

  Arguments:
      model: target model for the conversion.
  """
  # Note: SeparableConvolution not included
  # since only supported by TF.
  conv_classes = {
      'Conv1D',
      'Conv2D',
      'Conv3D',
      'Conv2DTranspose',
  }
  to_assign = []
  for layer in model.layers:
    if layer.__class__.__name__ in conv_classes:
      original_kernel = K.get_value(layer.kernel)
      converted_kernel = convert_kernel(original_kernel)
      to_assign.append((layer.kernel, converted_kernel))
  K.batch_set_value(to_assign)


def convert_dense_weights_data_format(dense,
                                      previous_feature_map_shape,
                                      target_data_format='channels_first'):
  """Utility useful when changing a convnet's `data_format`.

  When porting the weights of a convnet from one data format to the other,
  if the convnet includes a `Flatten` layer
  (applied to the last convolutional feature map)
  followed by a `Dense` layer, the weights of that `Dense` layer
  should be updated to reflect the new dimension ordering.

  Arguments:
      dense: The target `Dense` layer.
      previous_feature_map_shape: A shape tuple of 3 integers,
          e.g. `(512, 7, 7)`. The shape of the convolutional
          feature map right before the `Flatten` layer that
          came before the target `Dense` layer.
      target_data_format: One of "channels_last", "channels_first".
          Set it "channels_last"
          if converting a "channels_first" model to "channels_last",
          or reciprocally.
  """
  assert target_data_format in {'channels_last', 'channels_first'}
  kernel, bias = dense.get_weights()
  for i in range(kernel.shape[1]):
    if target_data_format == 'channels_first':
      c, h, w = previous_feature_map_shape
      original_fm_shape = (h, w, c)
      ki = kernel[:, i].reshape(original_fm_shape)
      ki = np.transpose(ki, (2, 0, 1))  # last -> first
    else:
      h, w, c = previous_feature_map_shape
      original_fm_shape = (c, h, w)
      ki = kernel[:, i].reshape(original_fm_shape)
      ki = np.transpose(ki, (1, 2, 0))  # first -> last
    kernel[:, i] = np.reshape(ki, (np.prod(previous_feature_map_shape),))
  dense.set_weights([kernel, bias])