aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/layers/wrappers.py
blob: d19d0b5f8caccd053d51114df93452055d5afe82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Wrapper layers: layers that augment the functionality of another layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy

from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.engine.base_layer import InputSpec
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.layers.recurrent import _standardize_args
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.util.tf_export import tf_export


@tf_export('keras.layers.Wrapper')
class Wrapper(Layer):
  """Abstract wrapper base class.

  Wrappers take another layer and augment it in various ways.
  Do not use this class as a layer, it is only an abstract base class.
  Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers.

  Arguments:
      layer: The layer to be wrapped.
  """

  def __init__(self, layer, **kwargs):
    assert isinstance(layer, Layer)
    self.layer = layer
    # Tracks mapping of Wrapper inputs to inner layer inputs. Useful when
    # the inner layer has update ops that depend on its inputs (as opposed
    # to the inputs to the Wrapper layer).
    self._input_map = {}
    super(Wrapper, self).__init__(**kwargs)

  def build(self, input_shape=None):
    self.built = True

  @property
  def activity_regularizer(self):
    if hasattr(self.layer, 'activity_regularizer'):
      return self.layer.activity_regularizer
    else:
      return None

  @property
  def trainable(self):
    return self.layer.trainable

  @trainable.setter
  def trainable(self, value):
    self.layer.trainable = value

  @property
  def trainable_weights(self):
    return self.layer.trainable_weights

  @property
  def non_trainable_weights(self):
    return self.layer.non_trainable_weights

  @property
  def updates(self):
    return self.layer.updates + self._updates

  @property
  def losses(self):
    return self.layer.losses + self._losses

  def get_weights(self):
    return self.layer.get_weights()

  def set_weights(self, weights):
    self.layer.set_weights(weights)

  def get_config(self):
    config = {
        'layer': {
            'class_name': self.layer.__class__.__name__,
            'config': self.layer.get_config()
        }
    }
    base_config = super(Wrapper, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  @classmethod
  def from_config(cls, config, custom_objects=None):
    from tensorflow.python.keras.layers import deserialize as deserialize_layer  # pylint: disable=g-import-not-at-top
    layer = deserialize_layer(
        config.pop('layer'), custom_objects=custom_objects)
    return cls(layer, **config)


@tf_export('keras.layers.TimeDistributed')
class TimeDistributed(Wrapper):
  """This wrapper allows to apply a layer to every temporal slice of an input.

  The input should be at least 3D, and the dimension of index one
  will be considered to be the temporal dimension.

  Consider a batch of 32 samples,
  where each sample is a sequence of 10 vectors of 16 dimensions.
  The batch input shape of the layer is then `(32, 10, 16)`,
  and the `input_shape`, not including the samples dimension, is `(10, 16)`.

  You can then use `TimeDistributed` to apply a `Dense` layer
  to each of the 10 timesteps, independently:

  ```python
      # as the first layer in a model
      model = Sequential()
      model.add(TimeDistributed(Dense(8), input_shape=(10, 16)))
      # now model.output_shape == (None, 10, 8)
  ```

  The output will then have shape `(32, 10, 8)`.

  In subsequent layers, there is no need for the `input_shape`:

  ```python
      model.add(TimeDistributed(Dense(32)))
      # now model.output_shape == (None, 10, 32)
  ```

  The output will then have shape `(32, 10, 32)`.

  `TimeDistributed` can be used with arbitrary layers, not just `Dense`,
  for instance with a `Conv2D` layer:

  ```python
      model = Sequential()
      model.add(TimeDistributed(Conv2D(64, (3, 3)),
                                input_shape=(10, 299, 299, 3)))
  ```

  Arguments:
      layer: a layer instance.

  Raises:
      ValueError: If not initialized with a `Layer` instance.
  """

  def __init__(self, layer, **kwargs):
    if not isinstance(layer, Layer):
      raise ValueError(
          'Please initialize `TimeDistributed` layer with a '
          '`Layer` instance. You passed: {input}'.format(input=layer))
    super(TimeDistributed, self).__init__(layer, **kwargs)
    self.supports_masking = True
    self._track_checkpointable(layer, name='layer')

  def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None):
    """Finds non-specific dimensions in the static shapes.

    The static shapes are replaced with the corresponding dynamic shapes of the
    tensor.

    Arguments:
        init_tuple: a tuple, the first part of the output shape
        tensor: the tensor from which to get the (static and dynamic) shapes
            as the last part of the output shape
        start_idx: int, which indicate the first dimension to take from
            the static shape of the tensor
        int_shape: an alternative static shape to take as the last part
            of the output shape
    Returns:
        The new int_shape with the first part from init_tuple
        and the last part from either `int_shape` (if provided)
        or `tensor.shape`, where every `None` is replaced by
        the corresponding dimension from `tf.shape(tensor)`.
    """
    # replace all None in int_shape by K.shape
    if int_shape is None:
      int_shape = K.int_shape(tensor)[start_idx:]
    if not any(not s for s in int_shape):
      return init_tuple + tuple(int_shape)
    shape = K.shape(tensor)
    int_shape = list(int_shape)
    for i, s in enumerate(int_shape):
      if not s:
        int_shape[i] = shape[start_idx + i]
    return init_tuple + tuple(int_shape)

  def build(self, input_shape):
    input_shape = tensor_shape.TensorShape(input_shape).as_list()
    assert len(input_shape) >= 3
    self.input_spec = InputSpec(shape=input_shape)
    child_input_shape = [input_shape[0]] + input_shape[2:]
    if not self.layer.built:
      # The base layer class calls a conversion function on the input shape to
      # convert it to a TensorShape. The conversion function requires a
      # tuple which is why we cast the shape.
      self.layer.build(tuple(child_input_shape))
      self.layer.built = True
    super(TimeDistributed, self).build()
    self.built = True

  def compute_output_shape(self, input_shape):
    input_shape = tensor_shape.TensorShape(input_shape).as_list()
    child_input_shape = tensor_shape.TensorShape([input_shape[0]] +
                                                 input_shape[2:])
    child_output_shape = self.layer.compute_output_shape(
        child_input_shape).as_list()
    timesteps = input_shape[1]
    return tensor_shape.TensorShape([child_output_shape[0], timesteps] +
                                    child_output_shape[1:])

  def call(self, inputs, training=None, mask=None):
    kwargs = {}
    if generic_utils.has_arg(self.layer.call, 'training'):
      kwargs['training'] = training
    uses_learning_phase = False  # pylint: disable=redefined-outer-name

    input_shape = K.int_shape(inputs)
    if input_shape[0]:
      # batch size matters, use rnn-based implementation
      def step(x, _):
        global uses_learning_phase  # pylint: disable=global-variable-undefined
        output = self.layer.call(x, **kwargs)
        if hasattr(output, '_uses_learning_phase'):
          uses_learning_phase = (output._uses_learning_phase or
                                 uses_learning_phase)
        return output, []

      _, outputs, _ = K.rnn(
          step,
          inputs,
          initial_states=[],
          input_length=input_shape[1],
          unroll=False)
      y = outputs
    else:
      # No batch size specified, therefore the layer will be able
      # to process batches of any size.
      # We can go with reshape-based implementation for performance.
      input_length = input_shape[1]
      if not input_length:
        input_length = array_ops.shape(inputs)[1]
      inner_input_shape = self._get_shape_tuple((-1,), inputs, 2)
      # Shape: (num_samples * timesteps, ...). And track the
      # transformation in self._input_map.
      input_uid = generic_utils.object_list_uid(inputs)
      inputs = array_ops.reshape(inputs, inner_input_shape)
      self._input_map[input_uid] = inputs
      # (num_samples * timesteps, ...)
      if generic_utils.has_arg(self.layer.call, 'mask') and mask is not None:
        inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
        kwargs['mask'] = K.reshape(mask, inner_mask_shape)
      y = self.layer.call(inputs, **kwargs)
      if hasattr(y, '_uses_learning_phase'):
        uses_learning_phase = y._uses_learning_phase
      # Shape: (num_samples, timesteps, ...)
      output_shape = self.compute_output_shape(input_shape).as_list()
      output_shape = self._get_shape_tuple(
          (-1, input_length), y, 1, output_shape[2:])
      y = array_ops.reshape(y, output_shape)

    # Apply activity regularizer if any:
    if (hasattr(self.layer, 'activity_regularizer') and
        self.layer.activity_regularizer is not None):
      regularization_loss = self.layer.activity_regularizer(y)
      self.add_loss(regularization_loss, inputs)

    if uses_learning_phase:
      y._uses_learning_phase = True
    return y

  def compute_mask(self, inputs, mask=None):
    """Computes an output mask tensor for Embedding layer.

    This is based on the inputs, mask, and the inner layer.
    If batch size is specified:
    Simply return the input `mask`. (An rnn-based implementation with
    more than one rnn inputs is required but not supported in tf.keras yet.)
    Otherwise we call `compute_mask` of the inner layer at each time step.
    If the output mask at each time step is not `None`:
    (E.g., inner layer is Masking or RNN)
    Concatenate all of them and return the concatenation.
    If the output mask at each time step is `None` and the input mask is not
    `None`:(E.g., inner layer is Dense)
    Reduce the input_mask to 2 dimensions and return it.
    Otherwise (both the output mask and the input mask are `None`):
    (E.g., `mask` is not used at all)
    Return `None`.

    Arguments:
      inputs: Tensor with shape [batch size, timesteps, ...] indicating the
          input to TimeDistributed. If static shape information is available for
          "batch size", `mask` is returned unmodified.
      mask: Either None (indicating no masking) or a Tensor indicating the
          input mask for TimeDistributed. The shape can be static or dynamic.

    Returns:
      Either None (no masking), or a [batch size, timesteps, ...] Tensor with
      an output mask for the TimeDistributed layer with the shape beyond the
      second dimension being the value of the input mask shape(if the computed
      output mask is none), an output mask with the shape beyond the first
      dimension being the value of the mask shape(if mask is not None) or
      output mask with the shape beyond the first dimension being the
      value of the computed output shape.

    """
    # cases need to call the layer.compute_mask when input_mask is None:
    # Masking layer and Embedding layer with mask_zero
    input_shape = K.int_shape(inputs)
    if input_shape[0]:
      # batch size matters, we currently do not handle mask explicitly
      return mask
    inner_mask = mask
    if inner_mask is not None:
      inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
      inner_mask = K.reshape(inner_mask, inner_mask_shape)
    input_uid = generic_utils.object_list_uid(inputs)
    inner_inputs = self._input_map.get(input_uid, inputs)
    output_mask = self.layer.compute_mask(inner_inputs, inner_mask)
    if output_mask is None:
      if mask is None:
        return None
      # input_mask is not None, and output_mask is None:
      # we should return a not-None mask
      output_mask = mask
      for _ in range(2, len(K.int_shape(mask))):
        output_mask = K.any(output_mask, axis=-1)
    else:
      # output_mask is not None. We need to reshape it
      input_length = input_shape[1]
      if not input_length:
        input_length = K.shape(inputs)[1]
      output_mask_int_shape = K.int_shape(output_mask)
      if output_mask_int_shape is None:
        # if the output_mask does not have a static shape,
        # its shape must be the same as mask's
        if mask is not None:
          output_mask_int_shape = K.int_shape(mask)
        else:
          output_mask_int_shape = K.compute_output_shape(input_shape)[:-1]
      output_mask_shape = self._get_shape_tuple(
          (-1, input_length), output_mask, 1, output_mask_int_shape[1:])
      output_mask = K.reshape(output_mask, output_mask_shape)
    return output_mask


@tf_export('keras.layers.Bidirectional')
class Bidirectional(Wrapper):
  """Bidirectional wrapper for RNNs.

  Arguments:
      layer: `Recurrent` instance.
      merge_mode: Mode by which outputs of the
          forward and backward RNNs will be combined.
          One of {'sum', 'mul', 'concat', 'ave', None}.
          If None, the outputs will not be combined,
          they will be returned as a list.

  Raises:
      ValueError: If not initialized with a `Layer` instance or
          In case of invalid `merge_mode` argument.

  Examples:

  ```python
      model = Sequential()
      model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5,
      10)))
      model.add(Bidirectional(LSTM(10)))
      model.add(Dense(5))
      model.add(Activation('softmax'))
      model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
  ```
  """

  def __init__(self, layer, merge_mode='concat', weights=None, **kwargs):
    if not isinstance(layer, Layer):
      raise ValueError(
          'Please initialize `Bidirectional` layer with a '
          '`Layer` instance. You passed: {input}'.format(input=layer))
    if merge_mode not in ['sum', 'mul', 'ave', 'concat', None]:
      raise ValueError('Invalid merge mode. '
                       'Merge mode should be one of '
                       '{"sum", "mul", "ave", "concat", None}')
    self.forward_layer = copy.copy(layer)
    config = layer.get_config()
    config['go_backwards'] = not config['go_backwards']
    self.backward_layer = layer.__class__.from_config(config)
    self.forward_layer._name = 'forward_' + self.forward_layer.name
    self.backward_layer._name = 'backward_' + self.backward_layer.name
    self.merge_mode = merge_mode
    if weights:
      nw = len(weights)
      self.forward_layer.initial_weights = weights[:nw // 2]
      self.backward_layer.initial_weights = weights[nw // 2:]
    self.stateful = layer.stateful
    self.return_sequences = layer.return_sequences
    self.return_state = layer.return_state
    self.supports_masking = True
    self._trainable = True
    self._num_constants = None
    super(Bidirectional, self).__init__(layer, **kwargs)
    self.input_spec = layer.input_spec
    self._track_checkpointable(self.forward_layer, name='forward_layer')
    self._track_checkpointable(self.backward_layer, name='backward_layer')

  @property
  def trainable(self):
    return self._trainable

  @trainable.setter
  def trainable(self, value):
    self._trainable = value
    self.forward_layer.trainable = value
    self.backward_layer.trainable = value

  def get_weights(self):
    return self.forward_layer.get_weights() + self.backward_layer.get_weights()

  def set_weights(self, weights):
    nw = len(weights)
    self.forward_layer.set_weights(weights[:nw // 2])
    self.backward_layer.set_weights(weights[nw // 2:])

  @tf_utils.shape_type_conversion
  def compute_output_shape(self, input_shape):
    output_shape = tuple(self.forward_layer.compute_output_shape(
        input_shape).as_list())
    if self.return_state:
      state_shape = output_shape[1:]
      output_shape = output_shape[0]

    if self.merge_mode == 'concat':
      output_shape = list(output_shape)
      output_shape[-1] *= 2
      output_shape = tuple(output_shape)
    elif self.merge_mode is None:
      output_shape = [output_shape, copy.copy(output_shape)]

    if self.return_state:
      if self.merge_mode is None:
        return output_shape + state_shape + copy.copy(state_shape)
      return [output_shape] + state_shape + copy.copy(state_shape)
    return output_shape

  def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
    """`Bidirectional.__call__` implements the same API as the wrapped `RNN`."""
    inputs, initial_state, constants = _standardize_args(
        inputs, initial_state, constants, self._num_constants)

    if isinstance(inputs, list):
      if len(inputs) > 1:
        initial_state = inputs[1:]
      inputs = inputs[0]

    if initial_state is None and constants is None:
      return super(Bidirectional, self).__call__(inputs, **kwargs)

    # Applies the same workaround as in `RNN.__call__`
    additional_inputs = []
    additional_specs = []
    if initial_state is not None:
      # Check if `initial_state` can be splitted into half
      num_states = len(initial_state)
      if num_states % 2 > 0:
        raise ValueError(
            'When passing `initial_state` to a Bidirectional RNN, '
            'the state should be a list containing the states of '
            'the underlying RNNs. '
            'Found: ' + str(initial_state))

      kwargs['initial_state'] = initial_state
      additional_inputs += initial_state
      state_specs = [InputSpec(shape=K.int_shape(state))
                     for state in initial_state]
      self.forward_layer.state_spec = state_specs[:num_states // 2]
      self.backward_layer.state_spec = state_specs[num_states // 2:]
      additional_specs += state_specs
    if constants is not None:
      kwargs['constants'] = constants
      additional_inputs += constants
      constants_spec = [InputSpec(shape=K.int_shape(constant))
                        for constant in constants]
      self.forward_layer.constants_spec = constants_spec
      self.backward_layer.constants_spec = constants_spec
      additional_specs += constants_spec

      self._num_constants = len(constants)
      self.forward_layer._num_constants = self._num_constants
      self.backward_layer._num_constants = self._num_constants

    is_keras_tensor = K.is_keras_tensor(additional_inputs[0])
    for tensor in additional_inputs:
      if K.is_keras_tensor(tensor) != is_keras_tensor:
        raise ValueError('The initial state of a Bidirectional'
                         ' layer cannot be specified with a mix of'
                         ' Keras tensors and non-Keras tensors'
                         ' (a "Keras tensor" is a tensor that was'
                         ' returned by a Keras layer, or by `Input`)')

    if is_keras_tensor:
      # Compute the full input spec, including state
      full_input = [inputs] + additional_inputs
      full_input_spec = self.input_spec + additional_specs

      # Perform the call with temporarily replaced input_spec
      original_input_spec = self.input_spec
      self.input_spec = full_input_spec
      output = super(Bidirectional, self).__call__(full_input, **kwargs)
      self.input_spec = original_input_spec
      return output
    else:
      return super(Bidirectional, self).__call__(inputs, **kwargs)

  def call(self,
           inputs,
           training=None,
           mask=None,
           initial_state=None,
           constants=None):
    """`Bidirectional.call` implements the same API as the wrapped `RNN`."""
    kwargs = {}
    if generic_utils.has_arg(self.layer.call, 'training'):
      kwargs['training'] = training
    if generic_utils.has_arg(self.layer.call, 'mask'):
      kwargs['mask'] = mask
    if generic_utils.has_arg(self.layer.call, 'constants'):
      kwargs['constants'] = constants

    if initial_state is not None and generic_utils.has_arg(
        self.layer.call, 'initial_state'):
      forward_inputs = [inputs[0]]
      backward_inputs = [inputs[0]]
      pivot = len(initial_state) // 2 + 1
      # add forward initial state
      forward_state = inputs[1:pivot]
      forward_inputs += forward_state
      if self._num_constants is None:
        # add backward initial state
        backward_state = inputs[pivot:]
        backward_inputs += backward_state
      else:
        # add backward initial state
        backward_state = inputs[pivot:-self._num_constants]
        backward_inputs += backward_state
        # add constants for forward and backward layers
        forward_inputs += inputs[-self._num_constants:]
        backward_inputs += inputs[-self._num_constants:]
      y = self.forward_layer.call(forward_inputs,
                                  initial_state=forward_state, **kwargs)
      y_rev = self.backward_layer.call(backward_inputs,
                                       initial_state=backward_state, **kwargs)
    else:
      y = self.forward_layer.call(inputs, **kwargs)
      y_rev = self.backward_layer.call(inputs, **kwargs)

    if self.return_state:
      states = y[1:] + y_rev[1:]
      y = y[0]
      y_rev = y_rev[0]

    if self.return_sequences:
      y_rev = K.reverse(y_rev, 1)
    if self.merge_mode == 'concat':
      output = K.concatenate([y, y_rev])
    elif self.merge_mode == 'sum':
      output = y + y_rev
    elif self.merge_mode == 'ave':
      output = (y + y_rev) / 2
    elif self.merge_mode == 'mul':
      output = y * y_rev
    elif self.merge_mode is None:
      output = [y, y_rev]
    else:
      raise ValueError(
          'Unrecognized value for `merge_mode`: %s' % (self.merge_mode))

    # Properly set learning phase
    if (getattr(y, '_uses_learning_phase', False) or
        getattr(y_rev, '_uses_learning_phase', False)):
      if self.merge_mode is None:
        for out in output:
          out._uses_learning_phase = True
      else:
        output._uses_learning_phase = True

    if self.return_state:
      if self.merge_mode is None:
        return output + states
      return [output] + states
    return output

  def reset_states(self):
    self.forward_layer.reset_states()
    self.backward_layer.reset_states()

  def build(self, input_shape):
    with K.name_scope(self.forward_layer.name):
      self.forward_layer.build(input_shape)
    with K.name_scope(self.backward_layer.name):
      self.backward_layer.build(input_shape)
    self.built = True

  def compute_mask(self, inputs, mask):
    if isinstance(mask, list):
      mask = mask[0]
    if self.return_sequences:
      if not self.merge_mode:
        output_mask = [mask, mask]
      else:
        output_mask = mask
    else:
      output_mask = [None, None] if not self.merge_mode else None

    if self.return_state:
      states = self.forward_layer.states
      state_mask = [None for _ in states]
      if isinstance(output_mask, list):
        return output_mask + state_mask * 2
      return [output_mask] + state_mask * 2
    return output_mask

  @property
  def trainable_weights(self):
    if hasattr(self.forward_layer, 'trainable_weights'):
      return (self.forward_layer.trainable_weights +
              self.backward_layer.trainable_weights)
    return []

  @property
  def non_trainable_weights(self):
    if hasattr(self.forward_layer, 'non_trainable_weights'):
      return (self.forward_layer.non_trainable_weights +
              self.backward_layer.non_trainable_weights)
    return []

  @property
  def updates(self):
    if hasattr(self.forward_layer, 'updates'):
      return self.forward_layer.updates + self.backward_layer.updates
    return []

  @property
  def losses(self):
    if hasattr(self.forward_layer, 'losses'):
      return self.forward_layer.losses + self.backward_layer.losses
    return []

  @property
  def constraints(self):
    constraints = {}
    if hasattr(self.forward_layer, 'constraints'):
      constraints.update(self.forward_layer.constraints)
      constraints.update(self.backward_layer.constraints)
    return constraints

  def get_config(self):
    config = {'merge_mode': self.merge_mode}
    if self._num_constants is not None:
      config['num_constants'] = self._num_constants
    base_config = super(Bidirectional, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  @classmethod
  def from_config(cls, config, custom_objects=None):
    num_constants = config.pop('num_constants', None)
    layer = super(Bidirectional, cls).from_config(config,
                                                  custom_objects=custom_objects)
    layer._num_constants = num_constants
    return layer