aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/layers/noise.py
blob: cb7cee3ebc3ebd2413836b876f2aaf21985f1d9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layers that operate regularization via the addition of noise.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.keras import backend as K
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.util.tf_export import tf_export


@tf_export('keras.layers.GaussianNoise')
class GaussianNoise(Layer):
  """Apply additive zero-centered Gaussian noise.

  This is useful to mitigate overfitting
  (you could see it as a form of random data augmentation).
  Gaussian Noise (GS) is a natural choice as corruption process
  for real valued inputs.

  As it is a regularization layer, it is only active at training time.

  Arguments:
      stddev: float, standard deviation of the noise distribution.

  Input shape:
      Arbitrary. Use the keyword argument `input_shape`
      (tuple of integers, does not include the samples axis)
      when using this layer as the first layer in a model.

  Output shape:
      Same shape as input.
  """

  def __init__(self, stddev, **kwargs):
    super(GaussianNoise, self).__init__(**kwargs)
    self.supports_masking = True
    self.stddev = stddev

  def call(self, inputs, training=None):

    def noised():
      return inputs + K.random_normal(
          shape=array_ops.shape(inputs), mean=0., stddev=self.stddev)

    return K.in_train_phase(noised, inputs, training=training)

  def get_config(self):
    config = {'stddev': self.stddev}
    base_config = super(GaussianNoise, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  @tf_utils.shape_type_conversion
  def compute_output_shape(self, input_shape):
    return input_shape


@tf_export('keras.layers.GaussianDropout')
class GaussianDropout(Layer):
  """Apply multiplicative 1-centered Gaussian noise.

  As it is a regularization layer, it is only active at training time.

  Arguments:
      rate: float, drop probability (as with `Dropout`).
          The multiplicative noise will have
          standard deviation `sqrt(rate / (1 - rate))`.

  Input shape:
      Arbitrary. Use the keyword argument `input_shape`
      (tuple of integers, does not include the samples axis)
      when using this layer as the first layer in a model.

  Output shape:
      Same shape as input.

  """

  def __init__(self, rate, **kwargs):
    super(GaussianDropout, self).__init__(**kwargs)
    self.supports_masking = True
    self.rate = rate

  def call(self, inputs, training=None):
    if 0 < self.rate < 1:

      def noised():
        stddev = np.sqrt(self.rate / (1.0 - self.rate))
        return inputs * K.random_normal(
            shape=array_ops.shape(inputs), mean=1.0, stddev=stddev)

      return K.in_train_phase(noised, inputs, training=training)
    return inputs

  def get_config(self):
    config = {'rate': self.rate}
    base_config = super(GaussianDropout, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  @tf_utils.shape_type_conversion
  def compute_output_shape(self, input_shape):
    return input_shape


@tf_export('keras.layers.AlphaDropout')
class AlphaDropout(Layer):
  """Applies Alpha Dropout to the input.

  Alpha Dropout is a `Dropout` that keeps mean and variance of inputs
  to their original values, in order to ensure the self-normalizing property
  even after this dropout.
  Alpha Dropout fits well to Scaled Exponential Linear Units
  by randomly setting activations to the negative saturation value.

  Arguments:
      rate: float, drop probability (as with `Dropout`).
          The multiplicative noise will have
          standard deviation `sqrt(rate / (1 - rate))`.
      seed: A Python integer to use as random seed.

  Input shape:
      Arbitrary. Use the keyword argument `input_shape`
      (tuple of integers, does not include the samples axis)
      when using this layer as the first layer in a model.

  Output shape:
      Same shape as input.

  """

  def __init__(self, rate, noise_shape=None, seed=None, **kwargs):
    super(AlphaDropout, self).__init__(**kwargs)
    self.rate = rate
    self.noise_shape = noise_shape
    self.seed = seed
    self.supports_masking = True

  def _get_noise_shape(self, inputs):
    return self.noise_shape if self.noise_shape else array_ops.shape(inputs)

  def call(self, inputs, training=None):
    if 0. < self.rate < 1.:
      noise_shape = self._get_noise_shape(inputs)

      def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed):  # pylint: disable=missing-docstring
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale

        kept_idx = math_ops.greater_equal(
            K.random_uniform(noise_shape, seed=seed), rate)
        kept_idx = math_ops.cast(kept_idx, K.floatx())

        # Get affine transformation params
        a = ((1 - rate) * (1 + rate * alpha_p**2))**-0.5
        b = -a * alpha_p * rate

        # Apply mask
        x = inputs * kept_idx + alpha_p * (1 - kept_idx)

        # Do affine transformation
        return a * x + b

      return K.in_train_phase(dropped_inputs, inputs, training=training)
    return inputs

  def get_config(self):
    config = {'rate': self.rate}
    base_config = super(AlphaDropout, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  @tf_utils.shape_type_conversion
  def compute_output_shape(self, input_shape):
    return input_shape