aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/layers/cudnn_recurrent.py
blob: 29a09a3d71239084e44295cc7102bed9520f6f15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Recurrent layers backed by cuDNN.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from tensorflow.python.framework import constant_op
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import constraints
from tensorflow.python.keras import initializers
from tensorflow.python.keras import regularizers
from tensorflow.python.keras.engine.base_layer import InputSpec
from tensorflow.python.keras.layers.recurrent import RNN
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_cudnn_rnn_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.util.tf_export import tf_export


class _CuDNNRNN(RNN):
  """Private base class for CuDNNGRU and CuDNNLSTM layers.

  Arguments:
    return_sequences: Boolean. Whether to return the last output
        in the output sequence, or the full sequence.
    return_state: Boolean. Whether to return the last state
        in addition to the output.
    go_backwards: Boolean (default False).
        If True, process the input sequence backwards and return the
        reversed sequence.
    stateful: Boolean (default False). If True, the last state
        for each sample at index i in a batch will be used as initial
        state for the sample of index i in the following batch.
    time_major: Boolean (default False). If true, the inputs and outputs will be
        in shape `(timesteps, batch, ...)`, whereas in the False case, it will
        be `(batch, timesteps, ...)`.
  """

  def __init__(self,
               return_sequences=False,
               return_state=False,
               go_backwards=False,
               stateful=False,
               time_major=False,
               **kwargs):
    # We invoke the base layer's initializer directly here because we do not
    # want to create RNN cell instance.
    super(RNN, self).__init__(**kwargs)  # pylint: disable=bad-super-call
    self.return_sequences = return_sequences
    self.return_state = return_state
    self.go_backwards = go_backwards
    self.stateful = stateful
    self.time_major = time_major
    self.supports_masking = False
    self.input_spec = [InputSpec(ndim=3)]
    if hasattr(self.cell.state_size, '__len__'):
      state_size = self.cell.state_size
    else:
      state_size = [self.cell.state_size]
    self.state_spec = [InputSpec(shape=(None, dim)) for dim in state_size]
    self.constants_spec = None
    self._states = None
    self._num_constants = None
    self._vector_shape = constant_op.constant([-1])

  def _canonical_to_params(self, weights, biases):
    weights = [array_ops.reshape(x, self._vector_shape) for x in weights]
    biases = [array_ops.reshape(x, self._vector_shape) for x in biases]
    return array_ops.concat(weights + biases, axis=0)

  def call(self, inputs, mask=None, training=None, initial_state=None):
    if isinstance(mask, list):
      mask = mask[0]
    if mask is not None:
      raise ValueError('Masking is not supported for CuDNN RNNs.')

    # input shape: `(samples, time (padded with zeros), input_dim)`
    # note that the .build() method of subclasses MUST define
    # self.input_spec and self.state_spec with complete input shapes.
    if isinstance(inputs, list):
      initial_state = inputs[1:]
      inputs = inputs[0]
    elif initial_state is not None:
      pass
    elif self.stateful:
      initial_state = self.states
    else:
      initial_state = self.get_initial_state(inputs)

    if len(initial_state) != len(self.states):
      raise ValueError('Layer has ' + str(len(self.states)) +
                       ' states but was passed ' + str(len(initial_state)) +
                       ' initial states.')

    if self.go_backwards:
      # Reverse time axis.
      inputs = K.reverse(inputs, 1)
    output, states = self._process_batch(inputs, initial_state)

    if self.stateful:
      updates = []
      for i in range(len(states)):
        updates.append(state_ops.assign(self.states[i], states[i]))
      self.add_update(updates, inputs)

    if self.return_state:
      return [output] + states
    else:
      return output

  def get_config(self):
    config = {
        'return_sequences': self.return_sequences,
        'return_state': self.return_state,
        'go_backwards': self.go_backwards,
        'stateful': self.stateful,
        'time_major': self.time_major,
    }
    base_config = super(  # pylint: disable=bad-super-call
        RNN, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  @classmethod
  def from_config(cls, config):
    return cls(**config)

  @property
  def trainable_weights(self):
    if self.trainable and self.built:
      return [self.kernel, self.recurrent_kernel, self.bias]
    return []

  @property
  def non_trainable_weights(self):
    if not self.trainable and self.built:
      return [self.kernel, self.recurrent_kernel, self.bias]
    return []

  @property
  def losses(self):
    return super(RNN, self).losses

  def get_losses_for(self, inputs=None):
    return super(  # pylint: disable=bad-super-call
        RNN, self).get_losses_for(inputs=inputs)


@tf_export('keras.layers.CuDNNGRU')
class CuDNNGRU(_CuDNNRNN):
  """Fast GRU implementation backed by cuDNN.

  More information about cuDNN can be found on the [NVIDIA
  developer website](https://developer.nvidia.com/cudnn).
  Can only be run on GPU.

  Arguments:
      units: Positive integer, dimensionality of the output space.
      kernel_initializer: Initializer for the `kernel` weights matrix, used for
        the linear transformation of the inputs.
      recurrent_initializer: Initializer for the `recurrent_kernel` weights
        matrix, used for the linear transformation of the recurrent state.
      bias_initializer: Initializer for the bias vector.
      kernel_regularizer: Regularizer function applied to the `kernel` weights
        matrix.
      recurrent_regularizer: Regularizer function applied to the
        `recurrent_kernel` weights matrix.
      bias_regularizer: Regularizer function applied to the bias vector.
      activity_regularizer: Regularizer function applied to the output of the
        layer (its "activation").
      kernel_constraint: Constraint function applied to the `kernel` weights
        matrix.
      recurrent_constraint: Constraint function applied to the
        `recurrent_kernel` weights matrix.
      bias_constraint: Constraint function applied to the bias vector.
      return_sequences: Boolean. Whether to return the last output in the output
        sequence, or the full sequence.
      return_state: Boolean. Whether to return the last state in addition to the
        output.
      go_backwards: Boolean (default False). If True, process the input sequence
        backwards and return the reversed sequence.
      stateful: Boolean (default False). If True, the last state for each sample
        at index i in a batch will be used as initial state for the sample of
        index i in the following batch.
  """

  def __init__(self,
               units,
               kernel_initializer='glorot_uniform',
               recurrent_initializer='orthogonal',
               bias_initializer='zeros',
               kernel_regularizer=None,
               recurrent_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               recurrent_constraint=None,
               bias_constraint=None,
               return_sequences=False,
               return_state=False,
               go_backwards=False,
               stateful=False,
               **kwargs):
    self.units = units
    cell_spec = collections.namedtuple('cell', 'state_size')
    self._cell = cell_spec(state_size=self.units)
    super(CuDNNGRU, self).__init__(
        return_sequences=return_sequences,
        return_state=return_state,
        go_backwards=go_backwards,
        stateful=stateful,
        **kwargs)

    self.kernel_initializer = initializers.get(kernel_initializer)
    self.recurrent_initializer = initializers.get(recurrent_initializer)
    self.bias_initializer = initializers.get(bias_initializer)

    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)
    self.activity_regularizer = regularizers.get(activity_regularizer)

    self.kernel_constraint = constraints.get(kernel_constraint)
    self.recurrent_constraint = constraints.get(recurrent_constraint)
    self.bias_constraint = constraints.get(bias_constraint)

  @property
  def cell(self):
    return self._cell

  def build(self, input_shape):
    super(CuDNNGRU, self).build(input_shape)
    if isinstance(input_shape, list):
      input_shape = input_shape[0]
    input_dim = int(input_shape[-1])

    self.kernel = self.add_weight(
        shape=(input_dim, self.units * 3),
        name='kernel',
        initializer=self.kernel_initializer,
        regularizer=self.kernel_regularizer,
        constraint=self.kernel_constraint)

    self.recurrent_kernel = self.add_weight(
        shape=(self.units, self.units * 3),
        name='recurrent_kernel',
        initializer=self.recurrent_initializer,
        regularizer=self.recurrent_regularizer,
        constraint=self.recurrent_constraint)

    self.bias = self.add_weight(
        shape=(self.units * 6,),
        name='bias',
        initializer=self.bias_initializer,
        regularizer=self.bias_regularizer,
        constraint=self.bias_constraint)

    self.built = True

  def _process_batch(self, inputs, initial_state):
    if not self.time_major:
      inputs = array_ops.transpose(inputs, perm=(1, 0, 2))
    input_h = initial_state[0]
    input_h = array_ops.expand_dims(input_h, axis=0)

    params = self._canonical_to_params(
        weights=[
            self.kernel[:, self.units:self.units * 2],
            self.kernel[:, :self.units],
            self.kernel[:, self.units * 2:],
            self.recurrent_kernel[:, self.units:self.units * 2],
            self.recurrent_kernel[:, :self.units],
            self.recurrent_kernel[:, self.units * 2:],
        ],
        biases=[
            self.bias[self.units:self.units * 2],
            self.bias[:self.units],
            self.bias[self.units * 2:self.units * 3],
            self.bias[self.units * 4:self.units * 5],
            self.bias[self.units * 3:self.units * 4],
            self.bias[self.units * 5:],
        ],
    )

    outputs, h, _, _ = gen_cudnn_rnn_ops.cudnn_rnn(
        inputs,
        input_h=input_h,
        input_c=0,
        params=params,
        is_training=True,
        rnn_mode='gru')

    if self.stateful or self.return_state:
      h = h[0]
    if self.return_sequences:
      if self.time_major:
        output = outputs
      else:
        output = array_ops.transpose(outputs, perm=(1, 0, 2))
    else:
      output = outputs[-1]
    return output, [h]

  def get_config(self):
    config = {
        'units': self.units,
        'kernel_initializer': initializers.serialize(self.kernel_initializer),
        'recurrent_initializer':
            initializers.serialize(self.recurrent_initializer),
        'bias_initializer': initializers.serialize(self.bias_initializer),
        'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
        'recurrent_regularizer':
            regularizers.serialize(self.recurrent_regularizer),
        'bias_regularizer': regularizers.serialize(self.bias_regularizer),
        'activity_regularizer':
            regularizers.serialize(self.activity_regularizer),
        'kernel_constraint': constraints.serialize(self.kernel_constraint),
        'recurrent_constraint':
            constraints.serialize(self.recurrent_constraint),
        'bias_constraint': constraints.serialize(self.bias_constraint)
    }
    base_config = super(CuDNNGRU, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


@tf_export('keras.layers.CuDNNLSTM')
class CuDNNLSTM(_CuDNNRNN):
  """Fast LSTM implementation backed by cuDNN.

  More information about cuDNN can be found on the [NVIDIA
  developer website](https://developer.nvidia.com/cudnn).
  Can only be run on GPU.

  Arguments:
      units: Positive integer, dimensionality of the output space.
      kernel_initializer: Initializer for the `kernel` weights matrix, used for
        the linear transformation of the inputs.
      unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate
        at initialization. Setting it to true will also force
        `bias_initializer="zeros"`. This is recommended in [Jozefowicz et
        al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
      recurrent_initializer: Initializer for the `recurrent_kernel` weights
        matrix, used for the linear transformation of the recurrent state.
      bias_initializer: Initializer for the bias vector.
      kernel_regularizer: Regularizer function applied to the `kernel` weights
        matrix.
      recurrent_regularizer: Regularizer function applied to the
        `recurrent_kernel` weights matrix.
      bias_regularizer: Regularizer function applied to the bias vector.
      activity_regularizer: Regularizer function applied to the output of the
        layer (its "activation").
      kernel_constraint: Constraint function applied to the `kernel` weights
        matrix.
      recurrent_constraint: Constraint function applied to the
        `recurrent_kernel` weights matrix.
      bias_constraint: Constraint function applied to the bias vector.
      return_sequences: Boolean. Whether to return the last output. in the
        output sequence, or the full sequence.
      return_state: Boolean. Whether to return the last state in addition to the
        output.
      go_backwards: Boolean (default False). If True, process the input sequence
        backwards and return the reversed sequence.
      stateful: Boolean (default False). If True, the last state for each sample
        at index i in a batch will be used as initial state for the sample of
        index i in the following batch.
  """

  def __init__(self,
               units,
               kernel_initializer='glorot_uniform',
               recurrent_initializer='orthogonal',
               bias_initializer='zeros',
               unit_forget_bias=True,
               kernel_regularizer=None,
               recurrent_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               recurrent_constraint=None,
               bias_constraint=None,
               return_sequences=False,
               return_state=False,
               go_backwards=False,
               stateful=False,
               **kwargs):
    self.units = units
    cell_spec = collections.namedtuple('cell', 'state_size')
    self._cell = cell_spec(state_size=(self.units, self.units))
    super(CuDNNLSTM, self).__init__(
        return_sequences=return_sequences,
        return_state=return_state,
        go_backwards=go_backwards,
        stateful=stateful,
        **kwargs)

    self.kernel_initializer = initializers.get(kernel_initializer)
    self.recurrent_initializer = initializers.get(recurrent_initializer)
    self.bias_initializer = initializers.get(bias_initializer)
    self.unit_forget_bias = unit_forget_bias

    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)
    self.activity_regularizer = regularizers.get(activity_regularizer)

    self.kernel_constraint = constraints.get(kernel_constraint)
    self.recurrent_constraint = constraints.get(recurrent_constraint)
    self.bias_constraint = constraints.get(bias_constraint)

  @property
  def cell(self):
    return self._cell

  def build(self, input_shape):
    super(CuDNNLSTM, self).build(input_shape)
    if isinstance(input_shape, list):
      input_shape = input_shape[0]
    input_dim = int(input_shape[-1])

    self.kernel = self.add_weight(
        shape=(input_dim, self.units * 4),
        name='kernel',
        initializer=self.kernel_initializer,
        regularizer=self.kernel_regularizer,
        constraint=self.kernel_constraint)

    self.recurrent_kernel = self.add_weight(
        shape=(self.units, self.units * 4),
        name='recurrent_kernel',
        initializer=self.recurrent_initializer,
        regularizer=self.recurrent_regularizer,
        constraint=self.recurrent_constraint)

    if self.unit_forget_bias:

      def bias_initializer(_, *args, **kwargs):
        return array_ops.concat([
            self.bias_initializer((self.units * 5,), *args, **kwargs),
            initializers.Ones()((self.units,), *args, **kwargs),
            self.bias_initializer((self.units * 2,), *args, **kwargs),
        ], axis=0)
    else:
      bias_initializer = self.bias_initializer
    self.bias = self.add_weight(
        shape=(self.units * 8,),
        name='bias',
        initializer=bias_initializer,
        regularizer=self.bias_regularizer,
        constraint=self.bias_constraint)

    self.built = True

  def _process_batch(self, inputs, initial_state):
    if not self.time_major:
      inputs = array_ops.transpose(inputs, perm=(1, 0, 2))
    input_h = initial_state[0]
    input_c = initial_state[1]
    input_h = array_ops.expand_dims(input_h, axis=0)
    input_c = array_ops.expand_dims(input_c, axis=0)

    params = self._canonical_to_params(
        weights=[
            self.kernel[:, :self.units],
            self.kernel[:, self.units:self.units * 2],
            self.kernel[:, self.units * 2:self.units * 3],
            self.kernel[:, self.units * 3:],
            self.recurrent_kernel[:, :self.units],
            self.recurrent_kernel[:, self.units:self.units * 2],
            self.recurrent_kernel[:, self.units * 2:self.units * 3],
            self.recurrent_kernel[:, self.units * 3:],
        ],
        biases=[
            self.bias[:self.units],
            self.bias[self.units:self.units * 2],
            self.bias[self.units * 2:self.units * 3],
            self.bias[self.units * 3:self.units * 4],
            self.bias[self.units * 4:self.units * 5],
            self.bias[self.units * 5:self.units * 6],
            self.bias[self.units * 6:self.units * 7],
            self.bias[self.units * 7:],
        ],
    )

    outputs, h, c, _ = gen_cudnn_rnn_ops.cudnn_rnn(
        inputs,
        input_h=input_h,
        input_c=input_c,
        params=params,
        is_training=True)

    if self.stateful or self.return_state:
      h = h[0]
      c = c[0]
    if self.return_sequences:
      if self.time_major:
        output = outputs
      else:
        output = array_ops.transpose(outputs, perm=(1, 0, 2))
    else:
      output = outputs[-1]
    return output, [h, c]

  def get_config(self):
    config = {
        'units': self.units,
        'kernel_initializer': initializers.serialize(self.kernel_initializer),
        'recurrent_initializer':
            initializers.serialize(self.recurrent_initializer),
        'bias_initializer': initializers.serialize(self.bias_initializer),
        'unit_forget_bias': self.unit_forget_bias,
        'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
        'recurrent_regularizer':
            regularizers.serialize(self.recurrent_regularizer),
        'bias_regularizer': regularizers.serialize(self.bias_regularizer),
        'activity_regularizer':
            regularizers.serialize(self.activity_regularizer),
        'kernel_constraint': constraints.serialize(self.kernel_constraint),
        'recurrent_constraint':
            constraints.serialize(self.recurrent_constraint),
        'bias_constraint': constraints.serialize(self.bias_constraint)
    }
    base_config = super(CuDNNLSTM, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))