aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/layers/convolutional_recurrent.py
blob: e61dd3043d96e69f76cb5bb041de304f5c1c2642 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Convolutional-recurrent layers.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.keras import activations
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import constraints
from tensorflow.python.keras import initializers
from tensorflow.python.keras import regularizers
from tensorflow.python.keras.engine.base_layer import InputSpec
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.layers.recurrent import _generate_dropout_mask
from tensorflow.python.keras.layers.recurrent import _standardize_args
from tensorflow.python.keras.layers.recurrent import RNN
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.util.tf_export import tf_export


class ConvRNN2D(RNN):
  """Base class for convolutional-recurrent layers.

  Arguments:
    cell: A RNN cell instance. A RNN cell is a class that has:
        - a `call(input_at_t, states_at_t)` method, returning
            `(output_at_t, states_at_t_plus_1)`. The call method of the
            cell can also take the optional argument `constants`, see
            section "Note on passing external constants" below.
        - a `state_size` attribute. This can be a single integer
            (single state) in which case it is
            the number of channels of the recurrent state
            (which should be the same as the number of channels of the cell
            output). This can also be a list/tuple of integers
            (one size per state). In this case, the first entry
            (`state_size[0]`) should be the same as
            the size of the cell output.
    return_sequences: Boolean. Whether to return the last output.
        in the output sequence, or the full sequence.
    return_state: Boolean. Whether to return the last state
        in addition to the output.
    go_backwards: Boolean (default False).
        If True, process the input sequence backwards and return the
        reversed sequence.
    stateful: Boolean (default False). If True, the last state
        for each sample at index i in a batch will be used as initial
        state for the sample of index i in the following batch.
    input_shape: Use this argument to specify the shape of the
        input when this layer is the first one in a model.

  Input shape:
    5D tensor with shape:
    `(samples, timesteps, channels, rows, cols)`
    if data_format='channels_first' or 5D tensor with shape:
    `(samples, timesteps, rows, cols, channels)`
    if data_format='channels_last'.

  Output shape:
    - if `return_state`: a list of tensors. The first tensor is
        the output. The remaining tensors are the last states,
        each 5D tensor with shape:
        `(samples, timesteps, filters, new_rows, new_cols)`
        if data_format='channels_first'
        or 5D tensor with shape:
        `(samples, timesteps, new_rows, new_cols, filters)`
        if data_format='channels_last'.
        `rows` and `cols` values might have changed due to padding.
    - if `return_sequences`: 5D tensor with shape:
        `(samples, timesteps, filters, new_rows, new_cols)`
        if data_format='channels_first'
        or 5D tensor with shape:
        `(samples, timesteps, new_rows, new_cols, filters)`
        if data_format='channels_last'.
    - else, 4D tensor with shape:
        `(samples, filters, new_rows, new_cols)`
        if data_format='channels_first'
        or 4D tensor with shape:
        `(samples, new_rows, new_cols, filters)`
        if data_format='channels_last'.

  Masking:
    This layer supports masking for input data with a variable number
    of timesteps. To introduce masks to your data,
    use an Embedding layer with the `mask_zero` parameter
    set to `True`.

  Note on using statefulness in RNNs:
    You can set RNN layers to be 'stateful', which means that the states
    computed for the samples in one batch will be reused as initial states
    for the samples in the next batch. This assumes a one-to-one mapping
    between samples in different successive batches.
    To enable statefulness:
        - specify `stateful=True` in the layer constructor.
        - specify a fixed batch size for your model, by passing
             - if sequential model:
                `batch_input_shape=(...)` to the first layer in your model.
             - if functional model with 1 or more Input layers:
                `batch_shape=(...)` to all the first layers in your model.
                This is the expected shape of your inputs
                *including the batch size*.
                It should be a tuple of integers,
                e.g. `(32, 10, 100, 100, 32)`.
                Note that the number of rows and columns should be specified
                too.
        - specify `shuffle=False` when calling fit().
    To reset the states of your model, call `.reset_states()` on either
    a specific layer, or on your entire model.

  Note on specifying the initial state of RNNs:
    You can specify the initial state of RNN layers symbolically by
    calling them with the keyword argument `initial_state`. The value of
    `initial_state` should be a tensor or list of tensors representing
    the initial state of the RNN layer.
    You can specify the initial state of RNN layers numerically by
    calling `reset_states` with the keyword argument `states`. The value of
    `states` should be a numpy array or list of numpy arrays representing
    the initial state of the RNN layer.

  Note on passing external constants to RNNs:
    You can pass "external" constants to the cell using the `constants`
    keyword argument of `RNN.__call__` (as well as `RNN.call`) method. This
    requires that the `cell.call` method accepts the same keyword argument
    `constants`. Such constants can be used to condition the cell
    transformation on additional static inputs (not changing over time),
    a.k.a. an attention mechanism.
  """

  def __init__(self,
               cell,
               return_sequences=False,
               return_state=False,
               go_backwards=False,
               stateful=False,
               unroll=False,
               **kwargs):
    if unroll:
      raise TypeError('Unrolling isn\'t possible with '
                      'convolutional RNNs.')
    if isinstance(cell, (list, tuple)):
      # The StackedConvRNN2DCells isn't implemented yet.
      raise TypeError('It is not possible at the moment to'
                      'stack convolutional cells.')
    super(ConvRNN2D, self).__init__(cell,
                                    return_sequences,
                                    return_state,
                                    go_backwards,
                                    stateful,
                                    unroll,
                                    **kwargs)
    self.input_spec = [InputSpec(ndim=5)]
    self.states = None
    self._num_constants = None

  @tf_utils.shape_type_conversion
  def compute_output_shape(self, input_shape):
    if isinstance(input_shape, list):
      input_shape = input_shape[0]

    cell = self.cell
    if cell.data_format == 'channels_first':
      rows = input_shape[3]
      cols = input_shape[4]
    elif cell.data_format == 'channels_last':
      rows = input_shape[2]
      cols = input_shape[3]
    rows = conv_utils.conv_output_length(rows,
                                         cell.kernel_size[0],
                                         padding=cell.padding,
                                         stride=cell.strides[0],
                                         dilation=cell.dilation_rate[0])
    cols = conv_utils.conv_output_length(cols,
                                         cell.kernel_size[1],
                                         padding=cell.padding,
                                         stride=cell.strides[1],
                                         dilation=cell.dilation_rate[1])

    if cell.data_format == 'channels_first':
      output_shape = input_shape[:2] + (cell.filters, rows, cols)
    elif cell.data_format == 'channels_last':
      output_shape = input_shape[:2] + (rows, cols, cell.filters)

    if not self.return_sequences:
      output_shape = output_shape[:1] + output_shape[2:]

    if self.return_state:
      output_shape = [output_shape]
      if cell.data_format == 'channels_first':
        output_shape += [(input_shape[0], cell.filters, rows, cols)
                         for _ in range(2)]
      elif cell.data_format == 'channels_last':
        output_shape += [(input_shape[0], rows, cols, cell.filters)
                         for _ in range(2)]
    return output_shape

  @tf_utils.shape_type_conversion
  def build(self, input_shape):
    # Note input_shape will be list of shapes of initial states and
    # constants if these are passed in __call__.
    if self._num_constants is not None:
      constants_shape = input_shape[-self._num_constants:]  # pylint: disable=E1130
    else:
      constants_shape = None

    if isinstance(input_shape, list):
      input_shape = input_shape[0]

    batch_size = input_shape[0] if self.stateful else None
    self.input_spec[0] = InputSpec(shape=(batch_size, None) + input_shape[2:5])

    # allow cell (if layer) to build before we set or validate state_spec
    if isinstance(self.cell, Layer):
      step_input_shape = (input_shape[0],) + input_shape[2:]
      if constants_shape is not None:
        self.cell.build([step_input_shape] + constants_shape)
      else:
        self.cell.build(step_input_shape)

    # set or validate state_spec
    if hasattr(self.cell.state_size, '__len__'):
      state_size = list(self.cell.state_size)
    else:
      state_size = [self.cell.state_size]

    if self.state_spec is not None:
      # initial_state was passed in call, check compatibility
      if self.cell.data_format == 'channels_first':
        ch_dim = 1
      elif self.cell.data_format == 'channels_last':
        ch_dim = 3
      if [spec.shape[ch_dim] for spec in self.state_spec] != state_size:
        raise ValueError(
            'An initial_state was passed that is not compatible with '
            '`cell.state_size`. Received `state_spec`={}; '
            'However `cell.state_size` is '
            '{}'.format([spec.shape for spec in self.state_spec],
                        self.cell.state_size))
    else:
      if self.cell.data_format == 'channels_first':
        self.state_spec = [InputSpec(shape=(None, dim, None, None))
                           for dim in state_size]
      elif self.cell.data_format == 'channels_last':
        self.state_spec = [InputSpec(shape=(None, None, None, dim))
                           for dim in state_size]
    if self.stateful:
      self.reset_states()
    self.built = True

  def get_initial_state(self, inputs):
    # (samples, timesteps, rows, cols, filters)
    initial_state = K.zeros_like(inputs)
    # (samples, rows, cols, filters)
    initial_state = K.sum(initial_state, axis=1)
    shape = list(self.cell.kernel_shape)
    shape[-1] = self.cell.filters
    initial_state = self.cell.input_conv(initial_state,
                                         K.zeros(tuple(shape)),
                                         padding=self.cell.padding)

    if hasattr(self.cell.state_size, '__len__'):
      return [initial_state for _ in self.cell.state_size]
    else:
      return [initial_state]

  def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
    inputs, initial_state, constants = _standardize_args(
        inputs, initial_state, constants, self._num_constants)

    if initial_state is None and constants is None:
      return super(ConvRNN2D, self).__call__(inputs, **kwargs)

    # If any of `initial_state` or `constants` are specified and are Keras
    # tensors, then add them to the inputs and temporarily modify the
    # input_spec to include them.

    additional_inputs = []
    additional_specs = []
    if initial_state is not None:
      kwargs['initial_state'] = initial_state
      additional_inputs += initial_state
      self.state_spec = []
      for state in initial_state:
        shape = K.int_shape(state)
        self.state_spec.append(InputSpec(shape=shape))

      additional_specs += self.state_spec
    if constants is not None:
      kwargs['constants'] = constants
      additional_inputs += constants
      self.constants_spec = [InputSpec(shape=K.int_shape(constant))
                             for constant in constants]
      self._num_constants = len(constants)
      additional_specs += self.constants_spec
    # at this point additional_inputs cannot be empty
    for tensor in additional_inputs:
      if K.is_keras_tensor(tensor) != K.is_keras_tensor(additional_inputs[0]):
        raise ValueError('The initial state or constants of an RNN'
                         ' layer cannot be specified with a mix of'
                         ' Keras tensors and non-Keras tensors')

    if K.is_keras_tensor(additional_inputs[0]):
      # Compute the full input spec, including state and constants
      full_input = [inputs] + additional_inputs
      full_input_spec = self.input_spec + additional_specs
      # Perform the call with temporarily replaced input_spec
      original_input_spec = self.input_spec
      self.input_spec = full_input_spec
      output = super(ConvRNN2D, self).__call__(full_input, **kwargs)
      self.input_spec = original_input_spec
      return output
    else:
      return super(ConvRNN2D, self).__call__(inputs, **kwargs)

  def call(self,
           inputs,
           mask=None,
           training=None,
           initial_state=None,
           constants=None):
    # note that the .build() method of subclasses MUST define
    # self.input_spec and self.state_spec with complete input shapes.
    if isinstance(inputs, list):
      inputs = inputs[0]
    if initial_state is not None:
      pass
    elif self.stateful:
      initial_state = self.states
    else:
      initial_state = self.get_initial_state(inputs)

    if isinstance(mask, list):
      mask = mask[0]

    if len(initial_state) != len(self.states):
      raise ValueError('Layer has ' + str(len(self.states)) +
                       ' states but was passed ' +
                       str(len(initial_state)) +
                       ' initial states.')
    timesteps = K.int_shape(inputs)[1]

    kwargs = {}
    if generic_utils.has_arg(self.cell.call, 'training'):
      kwargs['training'] = training

    if constants:
      if not generic_utils.has_arg(self.cell.call, 'constants'):
        raise ValueError('RNN cell does not support constants')

      def step(inputs, states):
        constants = states[-self._num_constants:]
        states = states[:-self._num_constants]
        return self.cell.call(inputs, states, constants=constants,
                              **kwargs)
    else:
      def step(inputs, states):
        return self.cell.call(inputs, states, **kwargs)

    last_output, outputs, states = K.rnn(step,
                                         inputs,
                                         initial_state,
                                         constants=constants,
                                         go_backwards=self.go_backwards,
                                         mask=mask,
                                         input_length=timesteps)
    if self.stateful:
      updates = []
      for i in range(len(states)):
        updates.append(K.update(self.states[i], states[i]))
      self.add_update(updates, inputs=True)

    if self.return_sequences:
      output = outputs
    else:
      output = last_output

    # Properly set learning phase
    if getattr(last_output, '_uses_learning_phase', False):
      output._uses_learning_phase = True

    if self.return_state:
      if not isinstance(states, (list, tuple)):
        states = [states]
      else:
        states = list(states)
      return [output] + states
    else:
      return output

  def reset_states(self, states=None):
    if not self.stateful:
      raise AttributeError('Layer must be stateful.')
    input_shape = self.input_spec[0].shape
    state_shape = self.compute_output_shape(input_shape)
    if self.return_state:
      state_shape = state_shape[0]
    if self.return_sequences:
      state_shape = state_shape[:1].concatenate(state_shape[2:])
    if None in state_shape:
      raise ValueError('If a RNN is stateful, it needs to know '
                       'its batch size. Specify the batch size '
                       'of your input tensors: \n'
                       '- If using a Sequential model, '
                       'specify the batch size by passing '
                       'a `batch_input_shape` '
                       'argument to your first layer.\n'
                       '- If using the functional API, specify '
                       'the time dimension by passing a '
                       '`batch_shape` argument to your Input layer.\n'
                       'The same thing goes for the number of rows and '
                       'columns.')

    # helper function
    def get_tuple_shape(nb_channels):
      result = list(state_shape)
      if self.cell.data_format == 'channels_first':
        result[1] = nb_channels
      elif self.cell.data_format == 'channels_last':
        result[3] = nb_channels
      else:
        raise KeyError
      return tuple(result)

    # initialize state if None
    if self.states[0] is None:
      if hasattr(self.cell.state_size, '__len__'):
        self.states = [K.zeros(get_tuple_shape(dim))
                       for dim in self.cell.state_size]
      else:
        self.states = [K.zeros(get_tuple_shape(self.cell.state_size))]
    elif states is None:
      if hasattr(self.cell.state_size, '__len__'):
        for state, dim in zip(self.states, self.cell.state_size):
          K.set_value(state, np.zeros(get_tuple_shape(dim)))
      else:
        K.set_value(self.states[0],
                    np.zeros(get_tuple_shape(self.cell.state_size)))
    else:
      if not isinstance(states, (list, tuple)):
        states = [states]
      if len(states) != len(self.states):
        raise ValueError('Layer ' + self.name + ' expects ' +
                         str(len(self.states)) + ' states, ' +
                         'but it received ' + str(len(states)) +
                         ' state values. Input received: ' + str(states))
      for index, (value, state) in enumerate(zip(states, self.states)):
        if hasattr(self.cell.state_size, '__len__'):
          dim = self.cell.state_size[index]
        else:
          dim = self.cell.state_size
        if value.shape != get_tuple_shape(dim):
          raise ValueError('State ' + str(index) +
                           ' is incompatible with layer ' +
                           self.name + ': expected shape=' +
                           str(get_tuple_shape(dim)) +
                           ', found shape=' + str(value.shape))
        # TODO(anjalisridhar): consider batch calls to `set_value`.
        K.set_value(state, value)


class ConvLSTM2DCell(Layer):
  """Cell class for the ConvLSTM2D layer.

  # Arguments
      filters: Integer, the dimensionality of the output space
          (i.e. the number of output filters in the convolution).
      kernel_size: An integer or tuple/list of n integers, specifying the
          dimensions of the convolution window.
      strides: An integer or tuple/list of n integers,
          specifying the strides of the convolution.
          Specifying any stride value != 1 is incompatible with specifying
          any `dilation_rate` value != 1.
      padding: One of `"valid"` or `"same"` (case-insensitive).
      data_format: A string,
          one of `channels_last` (default) or `channels_first`.
          It defaults to the `image_data_format` value found in your
          Keras config file at `~/.keras/keras.json`.
          If you never set it, then it will be "channels_last".
      dilation_rate: An integer or tuple/list of n integers, specifying
          the dilation rate to use for dilated convolution.
          Currently, specifying any `dilation_rate` value != 1 is
          incompatible with specifying any `strides` value != 1.
      activation: Activation function to use.
          If you don't specify anything, no activation is applied
          (ie. "linear" activation: `a(x) = x`).
      recurrent_activation: Activation function to use
          for the recurrent step.
      use_bias: Boolean, whether the layer uses a bias vector.
      kernel_initializer: Initializer for the `kernel` weights matrix,
          used for the linear transformation of the inputs.
      recurrent_initializer: Initializer for the `recurrent_kernel`
          weights matrix,
          used for the linear transformation of the recurrent state.
      bias_initializer: Initializer for the bias vector.
      unit_forget_bias: Boolean.
          If True, add 1 to the bias of the forget gate at initialization.
          Use in combination with `bias_initializer="zeros"`.
          This is recommended in [Jozefowicz et al.]
          (http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
      kernel_regularizer: Regularizer function applied to
          the `kernel` weights matrix.
      recurrent_regularizer: Regularizer function applied to
          the `recurrent_kernel` weights matrix.
      bias_regularizer: Regularizer function applied to the bias vector.
      kernel_constraint: Constraint function applied to
          the `kernel` weights matrix.
      recurrent_constraint: Constraint function applied to
          the `recurrent_kernel` weights matrix.
      bias_constraint: Constraint function applied to the bias vector.
      dropout: Float between 0 and 1.
          Fraction of the units to drop for
          the linear transformation of the inputs.
      recurrent_dropout: Float between 0 and 1.
          Fraction of the units to drop for
          the linear transformation of the recurrent state.
  """

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format=None,
               dilation_rate=(1, 1),
               activation='tanh',
               recurrent_activation='hard_sigmoid',
               use_bias=True,
               kernel_initializer='glorot_uniform',
               recurrent_initializer='orthogonal',
               bias_initializer='zeros',
               unit_forget_bias=True,
               kernel_regularizer=None,
               recurrent_regularizer=None,
               bias_regularizer=None,
               kernel_constraint=None,
               recurrent_constraint=None,
               bias_constraint=None,
               dropout=0.,
               recurrent_dropout=0.,
               **kwargs):
    super(ConvLSTM2DCell, self).__init__(**kwargs)
    self.filters = filters
    self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
    self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
    self.padding = conv_utils.normalize_padding(padding)
    self.data_format = conv_utils.normalize_data_format(data_format)
    self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2,
                                                    'dilation_rate')
    self.activation = activations.get(activation)
    self.recurrent_activation = activations.get(recurrent_activation)
    self.use_bias = use_bias

    self.kernel_initializer = initializers.get(kernel_initializer)
    self.recurrent_initializer = initializers.get(recurrent_initializer)
    self.bias_initializer = initializers.get(bias_initializer)
    self.unit_forget_bias = unit_forget_bias

    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)

    self.kernel_constraint = constraints.get(kernel_constraint)
    self.recurrent_constraint = constraints.get(recurrent_constraint)
    self.bias_constraint = constraints.get(bias_constraint)

    self.dropout = min(1., max(0., dropout))
    self.recurrent_dropout = min(1., max(0., recurrent_dropout))
    self.state_size = (self.filters, self.filters)
    self._dropout_mask = None
    self._recurrent_dropout_mask = None

  def build(self, input_shape):

    if self.data_format == 'channels_first':
      channel_axis = 1
    else:
      channel_axis = -1
    if input_shape[channel_axis] is None:
      raise ValueError('The channel dimension of the inputs '
                       'should be defined. Found `None`.')
    input_dim = input_shape[channel_axis]
    kernel_shape = self.kernel_size + (input_dim, self.filters * 4)
    self.kernel_shape = kernel_shape
    recurrent_kernel_shape = self.kernel_size + (self.filters, self.filters * 4)

    self.kernel = self.add_weight(shape=kernel_shape,
                                  initializer=self.kernel_initializer,
                                  name='kernel',
                                  regularizer=self.kernel_regularizer,
                                  constraint=self.kernel_constraint)
    self.recurrent_kernel = self.add_weight(
        shape=recurrent_kernel_shape,
        initializer=self.recurrent_initializer,
        name='recurrent_kernel',
        regularizer=self.recurrent_regularizer,
        constraint=self.recurrent_constraint)

    if self.use_bias:
      if self.unit_forget_bias:

        def bias_initializer(_, *args, **kwargs):
          return K.concatenate([
              self.bias_initializer((self.filters,), *args, **kwargs),
              initializers.Ones()((self.filters,), *args, **kwargs),
              self.bias_initializer((self.filters * 2,), *args, **kwargs),
          ])
      else:
        bias_initializer = self.bias_initializer
      self.bias = self.add_weight(
          shape=(self.filters * 4,),
          name='bias',
          initializer=bias_initializer,
          regularizer=self.bias_regularizer,
          constraint=self.bias_constraint)

    else:
      self.bias = None

    self.kernel_i = self.kernel[:, :, :, :self.filters]
    self.recurrent_kernel_i = self.recurrent_kernel[:, :, :, :self.filters]
    self.kernel_f = self.kernel[:, :, :, self.filters: self.filters * 2]
    self.recurrent_kernel_f = self.recurrent_kernel[:, :, :, self.filters:
                                                    self.filters * 2]
    self.kernel_c = self.kernel[:, :, :, self.filters * 2: self.filters * 3]
    self.recurrent_kernel_c = self.recurrent_kernel[:, :, :, self.filters * 2:
                                                    self.filters * 3]
    self.kernel_o = self.kernel[:, :, :, self.filters * 3:]
    self.recurrent_kernel_o = self.recurrent_kernel[:, :, :, self.filters * 3:]

    if self.use_bias:
      self.bias_i = self.bias[:self.filters]
      self.bias_f = self.bias[self.filters: self.filters * 2]
      self.bias_c = self.bias[self.filters * 2: self.filters * 3]
      self.bias_o = self.bias[self.filters * 3:]
    else:
      self.bias_i = None
      self.bias_f = None
      self.bias_c = None
      self.bias_o = None
    self.built = True

  def call(self, inputs, states, training=None):
    if 0 < self.dropout < 1 and self._dropout_mask is None:
      self._dropout_mask = _generate_dropout_mask(
          K.ones_like(inputs),
          self.dropout,
          training=training,
          count=4)
    if (0 < self.recurrent_dropout < 1 and
        self._recurrent_dropout_mask is None):
      self._recurrent_dropout_mask = _generate_dropout_mask(
          K.ones_like(states[1]),
          self.recurrent_dropout,
          training=training,
          count=4)

    # dropout matrices for input units
    dp_mask = self._dropout_mask
    # dropout matrices for recurrent units
    rec_dp_mask = self._recurrent_dropout_mask

    h_tm1 = states[0]  # previous memory state
    c_tm1 = states[1]  # previous carry state

    if 0 < self.dropout < 1.:
      inputs_i = inputs * dp_mask[0]
      inputs_f = inputs * dp_mask[1]
      inputs_c = inputs * dp_mask[2]
      inputs_o = inputs * dp_mask[3]
    else:
      inputs_i = inputs
      inputs_f = inputs
      inputs_c = inputs
      inputs_o = inputs

    if 0 < self.recurrent_dropout < 1.:
      h_tm1_i = h_tm1 * rec_dp_mask[0]
      h_tm1_f = h_tm1 * rec_dp_mask[1]
      h_tm1_c = h_tm1 * rec_dp_mask[2]
      h_tm1_o = h_tm1 * rec_dp_mask[3]
    else:
      h_tm1_i = h_tm1
      h_tm1_f = h_tm1
      h_tm1_c = h_tm1
      h_tm1_o = h_tm1

    x_i = self.input_conv(inputs_i, self.kernel_i, self.bias_i,
                          padding=self.padding)
    x_f = self.input_conv(inputs_f, self.kernel_f, self.bias_f,
                          padding=self.padding)
    x_c = self.input_conv(inputs_c, self.kernel_c, self.bias_c,
                          padding=self.padding)
    x_o = self.input_conv(inputs_o, self.kernel_o, self.bias_o,
                          padding=self.padding)
    h_i = self.recurrent_conv(h_tm1_i,
                              self.recurrent_kernel_i)
    h_f = self.recurrent_conv(h_tm1_f,
                              self.recurrent_kernel_f)
    h_c = self.recurrent_conv(h_tm1_c,
                              self.recurrent_kernel_c)
    h_o = self.recurrent_conv(h_tm1_o,
                              self.recurrent_kernel_o)

    i = self.recurrent_activation(x_i + h_i)
    f = self.recurrent_activation(x_f + h_f)
    c = f * c_tm1 + i * self.activation(x_c + h_c)
    o = self.recurrent_activation(x_o + h_o)
    h = o * self.activation(c)

    if 0 < self.dropout + self.recurrent_dropout:
      if training is None:
        h._uses_learning_phase = True

    return h, [h, c]

  def input_conv(self, x, w, b=None, padding='valid'):
    conv_out = K.conv2d(x, w, strides=self.strides,
                        padding=padding,
                        data_format=self.data_format,
                        dilation_rate=self.dilation_rate)
    if b is not None:
      conv_out = K.bias_add(conv_out, b,
                            data_format=self.data_format)
    return conv_out

  def recurrent_conv(self, x, w):
    conv_out = K.conv2d(x, w, strides=(1, 1),
                        padding='same',
                        data_format=self.data_format)
    return conv_out

  def get_config(self):
    config = {'filters': self.filters,
              'kernel_size': self.kernel_size,
              'strides': self.strides,
              'padding': self.padding,
              'data_format': self.data_format,
              'dilation_rate': self.dilation_rate,
              'activation': activations.serialize(self.activation),
              'recurrent_activation': activations.serialize(
                  self.recurrent_activation),
              'use_bias': self.use_bias,
              'kernel_initializer': initializers.serialize(
                  self.kernel_initializer),
              'recurrent_initializer': initializers.serialize(
                  self.recurrent_initializer),
              'bias_initializer': initializers.serialize(self.bias_initializer),
              'unit_forget_bias': self.unit_forget_bias,
              'kernel_regularizer': regularizers.serialize(
                  self.kernel_regularizer),
              'recurrent_regularizer': regularizers.serialize(
                  self.recurrent_regularizer),
              'bias_regularizer': regularizers.serialize(self.bias_regularizer),
              'kernel_constraint': constraints.serialize(
                  self.kernel_constraint),
              'recurrent_constraint': constraints.serialize(
                  self.recurrent_constraint),
              'bias_constraint': constraints.serialize(self.bias_constraint),
              'dropout': self.dropout,
              'recurrent_dropout': self.recurrent_dropout}
    base_config = super(ConvLSTM2DCell, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


@tf_export('keras.layers.ConvLSTM2D')
class ConvLSTM2D(ConvRNN2D):
  """Convolutional LSTM.

  It is similar to an LSTM layer, but the input transformations
  and recurrent transformations are both convolutional.

  Arguments:
    filters: Integer, the dimensionality of the output space
        (i.e. the number of output filters in the convolution).
    kernel_size: An integer or tuple/list of n integers, specifying the
        dimensions of the convolution window.
    strides: An integer or tuple/list of n integers,
        specifying the strides of the convolution.
        Specifying any stride value != 1 is incompatible with specifying
        any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
    data_format: A string,
        one of `channels_last` (default) or `channels_first`.
        The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch, time, ..., channels)`
        while `channels_first` corresponds to
        inputs with shape `(batch, time, channels, ...)`.
        It defaults to the `image_data_format` value found in your
        Keras config file at `~/.keras/keras.json`.
        If you never set it, then it will be "channels_last".
    dilation_rate: An integer or tuple/list of n integers, specifying
        the dilation rate to use for dilated convolution.
        Currently, specifying any `dilation_rate` value != 1 is
        incompatible with specifying any `strides` value != 1.
    activation: Activation function to use.
        If you don't specify anything, no activation is applied
        (ie. "linear" activation: `a(x) = x`).
    recurrent_activation: Activation function to use
        for the recurrent step.
    use_bias: Boolean, whether the layer uses a bias vector.
    kernel_initializer: Initializer for the `kernel` weights matrix,
        used for the linear transformation of the inputs.
    recurrent_initializer: Initializer for the `recurrent_kernel`
        weights matrix,
        used for the linear transformation of the recurrent state.
    bias_initializer: Initializer for the bias vector.
    unit_forget_bias: Boolean.
        If True, add 1 to the bias of the forget gate at initialization.
        Use in combination with `bias_initializer="zeros"`.
        This is recommended in [Jozefowicz et al.]
        (http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
    kernel_regularizer: Regularizer function applied to
        the `kernel` weights matrix.
    recurrent_regularizer: Regularizer function applied to
        the `recurrent_kernel` weights matrix.
    bias_regularizer: Regularizer function applied to the bias vector.
    activity_regularizer: Regularizer function applied to.
    kernel_constraint: Constraint function applied to
        the `kernel` weights matrix.
    recurrent_constraint: Constraint function applied to
        the `recurrent_kernel` weights matrix.
    bias_constraint: Constraint function applied to the bias vector.
    return_sequences: Boolean. Whether to return the last output
        in the output sequence, or the full sequence.
    go_backwards: Boolean (default False).
        If True, process the input sequence backwards.
    stateful: Boolean (default False). If True, the last state
        for each sample at index i in a batch will be used as initial
        state for the sample of index i in the following batch.
    dropout: Float between 0 and 1.
        Fraction of the units to drop for
        the linear transformation of the inputs.
    recurrent_dropout: Float between 0 and 1.
        Fraction of the units to drop for
        the linear transformation of the recurrent state.

  Input shape:
    - if data_format='channels_first'
        5D tensor with shape:
        `(samples, time, channels, rows, cols)`
    - if data_format='channels_last'
        5D tensor with shape:
        `(samples, time, rows, cols, channels)`

  Output shape:
    - if `return_sequences`
         - if data_format='channels_first'
            5D tensor with shape:
            `(samples, time, filters, output_row, output_col)`
         - if data_format='channels_last'
            5D tensor with shape:
            `(samples, time, output_row, output_col, filters)`
    - else
        - if data_format ='channels_first'
            4D tensor with shape:
            `(samples, filters, output_row, output_col)`
        - if data_format='channels_last'
            4D tensor with shape:
            `(samples, output_row, output_col, filters)`
        where o_row and o_col depend on the shape of the filter and
        the padding

  Raises:
    ValueError: in case of invalid constructor arguments.

  References:
    - [Convolutional LSTM Network: A Machine Learning Approach for
    Precipitation Nowcasting](http://arxiv.org/abs/1506.04214v1)
    The current implementation does not include the feedback loop on the
    cells output.

  """

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format=None,
               dilation_rate=(1, 1),
               activation='tanh',
               recurrent_activation='hard_sigmoid',
               use_bias=True,
               kernel_initializer='glorot_uniform',
               recurrent_initializer='orthogonal',
               bias_initializer='zeros',
               unit_forget_bias=True,
               kernel_regularizer=None,
               recurrent_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               recurrent_constraint=None,
               bias_constraint=None,
               return_sequences=False,
               go_backwards=False,
               stateful=False,
               dropout=0.,
               recurrent_dropout=0.,
               **kwargs):
    cell = ConvLSTM2DCell(filters=filters,
                          kernel_size=kernel_size,
                          strides=strides,
                          padding=padding,
                          data_format=data_format,
                          dilation_rate=dilation_rate,
                          activation=activation,
                          recurrent_activation=recurrent_activation,
                          use_bias=use_bias,
                          kernel_initializer=kernel_initializer,
                          recurrent_initializer=recurrent_initializer,
                          bias_initializer=bias_initializer,
                          unit_forget_bias=unit_forget_bias,
                          kernel_regularizer=kernel_regularizer,
                          recurrent_regularizer=recurrent_regularizer,
                          bias_regularizer=bias_regularizer,
                          kernel_constraint=kernel_constraint,
                          recurrent_constraint=recurrent_constraint,
                          bias_constraint=bias_constraint,
                          dropout=dropout,
                          recurrent_dropout=recurrent_dropout)
    super(ConvLSTM2D, self).__init__(cell,
                                     return_sequences=return_sequences,
                                     go_backwards=go_backwards,
                                     stateful=stateful,
                                     **kwargs)
    self.activity_regularizer = regularizers.get(activity_regularizer)

  def call(self, inputs, mask=None, training=None, initial_state=None):
    return super(ConvLSTM2D, self).call(inputs,
                                        mask=mask,
                                        training=training,
                                        initial_state=initial_state)

  @property
  def filters(self):
    return self.cell.filters

  @property
  def kernel_size(self):
    return self.cell.kernel_size

  @property
  def strides(self):
    return self.cell.strides

  @property
  def padding(self):
    return self.cell.padding

  @property
  def data_format(self):
    return self.cell.data_format

  @property
  def dilation_rate(self):
    return self.cell.dilation_rate

  @property
  def activation(self):
    return self.cell.activation

  @property
  def recurrent_activation(self):
    return self.cell.recurrent_activation

  @property
  def use_bias(self):
    return self.cell.use_bias

  @property
  def kernel_initializer(self):
    return self.cell.kernel_initializer

  @property
  def recurrent_initializer(self):
    return self.cell.recurrent_initializer

  @property
  def bias_initializer(self):
    return self.cell.bias_initializer

  @property
  def unit_forget_bias(self):
    return self.cell.unit_forget_bias

  @property
  def kernel_regularizer(self):
    return self.cell.kernel_regularizer

  @property
  def recurrent_regularizer(self):
    return self.cell.recurrent_regularizer

  @property
  def bias_regularizer(self):
    return self.cell.bias_regularizer

  @property
  def kernel_constraint(self):
    return self.cell.kernel_constraint

  @property
  def recurrent_constraint(self):
    return self.cell.recurrent_constraint

  @property
  def bias_constraint(self):
    return self.cell.bias_constraint

  @property
  def dropout(self):
    return self.cell.dropout

  @property
  def recurrent_dropout(self):
    return self.cell.recurrent_dropout

  def get_config(self):
    config = {'filters': self.filters,
              'kernel_size': self.kernel_size,
              'strides': self.strides,
              'padding': self.padding,
              'data_format': self.data_format,
              'dilation_rate': self.dilation_rate,
              'activation': activations.serialize(self.activation),
              'recurrent_activation': activations.serialize(
                  self.recurrent_activation),
              'use_bias': self.use_bias,
              'kernel_initializer': initializers.serialize(
                  self.kernel_initializer),
              'recurrent_initializer': initializers.serialize(
                  self.recurrent_initializer),
              'bias_initializer': initializers.serialize(self.bias_initializer),
              'unit_forget_bias': self.unit_forget_bias,
              'kernel_regularizer': regularizers.serialize(
                  self.kernel_regularizer),
              'recurrent_regularizer': regularizers.serialize(
                  self.recurrent_regularizer),
              'bias_regularizer': regularizers.serialize(self.bias_regularizer),
              'activity_regularizer': regularizers.serialize(
                  self.activity_regularizer),
              'kernel_constraint': constraints.serialize(
                  self.kernel_constraint),
              'recurrent_constraint': constraints.serialize(
                  self.recurrent_constraint),
              'bias_constraint': constraints.serialize(self.bias_constraint),
              'dropout': self.dropout,
              'recurrent_dropout': self.recurrent_dropout}
    base_config = super(ConvLSTM2D, self).get_config()
    del base_config['cell']
    return dict(list(base_config.items()) + list(config.items()))

  @classmethod
  def from_config(cls, config):
    return cls(**config)