aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/engine/training_distributed.py
blob: e440e02bfb066652c2a0c0d751f7cba285a28662 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Part of the Keras training engine related to distributed training.
"""
# pylint: disable=protected-access
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import errors
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import callbacks as cbks
from tensorflow.python.keras import optimizers
from tensorflow.python.keras.engine import distributed_training_utils
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import distribute as distribute_lib


def fit_loop(
    model,
    iterator,
    epochs=100,
    verbose=1,
    callbacks=None,
    val_iterator=None,
    initial_epoch=0,
    steps_per_epoch=None,
    validation_steps=None):
  """fit function when using DistributionStrategy for training.

  Arguments:
      model: Keras Model instance.
      iterator: Iterator for input data.
      epochs: Number of times to iterate over the data
      verbose: Verbosity mode, 0, 1 or 2
      callbacks: List of callbacks to be called during training
      val_iterator: Iterator for validation data.
      initial_epoch: Epoch at which to start training
          (useful for resuming a previous training run)
      steps_per_epoch: Total number of steps (batches of samples)
          before declaring one epoch finished and starting the
          next epoch. Ignored with the default value of `None`.
      validation_steps: Number of steps to run validation for
          (only if doing validation from data tensors).
          Ignored with the default value of `None`.

  Returns:
      `History` object.

  Raises:
      ValueError: in case of invalid arguments.
  """
  current_strategy = model._distribution_strategy

  # TODO(priyag, sourabhbajaj): Remove this when the codepaths are merged.
  if current_strategy.__class__.__name__ == 'TPUStrategy':
    return _experimental_fit_loop(
        model, iterator, epochs, initial_epoch, steps_per_epoch)

  clone_model_on_towers(
      model, current_strategy, make_callback_model=True)

  def _per_device_train_function(model):
    model._make_train_function()
    return (model.train_function.inputs,
            model.train_function.outputs,
            model.train_function.updates_op,
            model.train_function.session_kwargs)

  inputs, targets = _get_input_from_iterator(iterator, model)
  with current_strategy.scope():
    # Create train ops on each of the devices when we call
    # `_per_device_train_function`.
    (grouped_inputs, grouped_outputs, grouped_updates,
     grouped_session_args) = current_strategy.call_for_each_tower(
         _per_device_train_function, model._grouped_model)
    # Unwrap all the per device values returned from `call_for_each_tower`.
    # Unwrapping per device values gives you a list of values that can be
    # used to construct a new train function that is composed of update ops on
    # all the devices over which the model is distributed.
    (all_inputs, all_outputs, all_updates,
     all_session_args) = distributed_training_utils.unwrap_values(
         current_strategy, grouped_inputs, grouped_outputs,
         grouped_updates, grouped_session_args, with_loss_tensor=True)

    # Dataset inputs and targets are also per devices values that need to be
    # unwrapped.
    dataset_inputs = distributed_training_utils.flatten_perdevice_values(
        current_strategy, inputs)
    dataset_targets = distributed_training_utils.flatten_perdevice_values(
        current_strategy, targets)

  # Create a train function that is composed of all the parameters above.
  distributed_train_function = K.Function(
      all_inputs, all_outputs,
      updates=all_updates,
      name='distributed_train_function',
      **all_session_args)

  # We need to set sample_weights to None since there are sample weight
  # placeholders that are created with default values.
  sample_weights = [None for _ in range(len(model.outputs) *
                                        current_strategy.num_towers)]
  if model.uses_learning_phase and not isinstance(K.learning_phase(), int):
    ins = dataset_inputs + dataset_targets + sample_weights + [1]
  else:
    ins = dataset_inputs + dataset_targets

  do_validation = False
  if validation_steps:
    do_validation = True

  # Copy the weights from the original model to each of the replicated models.
  orig_model_weights = model.get_weights()
  with current_strategy.scope():
    distributed_model = current_strategy.unwrap(model._grouped_model)[0]
    distributed_training_utils.set_weights(
        current_strategy, distributed_model, orig_model_weights)

  callbacks = cbks.configure_callbacks(
      callbacks,
      model,
      do_validation=do_validation,
      val_inputs=None,
      val_targets=None,
      epochs=epochs,
      steps_per_epoch=steps_per_epoch,
      verbose=verbose)
  out_labels = model.metrics_names or []
  callbacks.on_train_begin()

  assert steps_per_epoch is not None

  for epoch in range(initial_epoch, epochs):
    callbacks.on_epoch_begin(epoch)
    epoch_logs = {}
    for step_index in range(steps_per_epoch):
      batch_logs = {'batch': step_index, 'size': 1}
      callbacks.on_batch_begin(step_index, batch_logs)
      try:
        outs = distributed_train_function(ins)
      except errors.OutOfRangeError:
        logging.warning('Your dataset iterator ran out of data; '
                        'interrupting training. Make sure that your dataset '
                        'can generate at least `steps_per_epoch * epochs` '
                        'batches (in this case, %d batches).' %
                        steps_per_epoch * epochs)
        break

      if not isinstance(outs, list):
        outs = [outs]

      outs = _aggregate_metrics_across_towers(
          current_strategy.num_towers, out_labels, outs)
      for l, o in zip(out_labels, outs):
        batch_logs[l] = o
      callbacks.on_batch_end(step_index, batch_logs)
      if callbacks.model.stop_training:
        break
    if do_validation:
      val_outs = test_loop(
          model,
          val_iterator,
          steps=validation_steps,
          verbose=0)
      if not isinstance(val_outs, list):
        val_outs = [val_outs]
      # Same labels assumed.
      for l, o in zip(out_labels, val_outs):
        epoch_logs['val_' + l] = o

    callbacks.on_epoch_end(epoch, epoch_logs)
    if callbacks.model.stop_training:
      break
  callbacks.on_train_end()

  # Copy the weights back from the replicated model to the original model.
  with current_strategy.scope():
    updated_weights = current_strategy.unwrap(
        model._grouped_model)[0].get_weights()
    model.set_weights(updated_weights)
  return model.history


def _experimental_fit_loop(
    model,
    iterator,
    epochs=100,
    initial_epoch=0,
    steps_per_epoch=None):
  """fit function when using TPU DistributionStrategy for training.

  Arguments:
      model: Keras Model instance.
      iterator: Iterator that returns inputs and targets
      epochs: Number of times to iterate over the data
      initial_epoch: Epoch at which to start training
          (useful for resuming a previous training run)
      steps_per_epoch: Total number of steps (batches of samples)
          before declaring one epoch finished and starting the
          next epoch. Ignored with the default value of `None`.

  Returns:
      Returns `None`.

  Raises:
      ValueError: in case of invalid arguments.
  """
  current_strategy = model._distribution_strategy

  # TODO(priyag): Add validation that shapes are fully defined for TPU case.

  # TODO(priyag, sourabhbajaj): This should be moved into a callback instead.
  K.get_session().run(current_strategy.initialize())

  def _per_device_train_function(model):
    model._make_train_function()
    return (model.train_function.inputs,
            model.train_function.outputs,
            model.train_function.updates_op,
            model.train_function.session_kwargs)

  # TODO(priyag, sourabhbajaj): This should likely not be hardcoded here.
  K.set_learning_phase(1)

  def step_fn(ctx, inputs, targets):
    """Clones the model and calls make_train_function."""
    # TODO(priyag, sourabhbajaj): Should cache this keyed on input shapes.
    clone_model_on_towers(
        model,
        current_strategy,
        make_callback_model=True,
        inputs=inputs,
        targets=targets)

    (grouped_inputs, grouped_outputs, grouped_updates,
     grouped_session_args) = current_strategy.call_for_each_tower(
         _per_device_train_function, model._grouped_model)
    (all_inputs, all_outputs, all_updates,
     all_session_args) = distributed_training_utils.unwrap_values(
         current_strategy, grouped_inputs, grouped_outputs,
         grouped_updates, grouped_session_args, with_loss_tensor=True)
    combined_fn = K.Function(
        all_inputs, all_outputs,
        updates=all_updates,
        name='distributed_train_function',
        **all_session_args)

    # TODO(priyag, sourabhbajaj): Perhaps the aggregation type needs to be
    # something else for different outputs.
    out_labels = model.metrics_names or []
    for label, output in zip(out_labels, combined_fn.outputs):
      ctx.set_last_step_output(label, output,
                               aggregation=distribute_lib.get_loss_reduction())

    # TODO(priyag, sourabhbajaj): Ignoring these things from the combined_fn:
    # feed_dict, session kwargs, run options, run_metadata for now. These should
    # be handled appropriately
    return combined_fn.updates_op

  # Add initial dummy values for loss and other metric tensors.
  initial_loop_values = {}
  initial_loop_values['loss'] = constant_op.constant(1e7)
  for name, tensor in zip(model.metrics_names[1:], model.metrics_tensors):
    initial_loop_values[name] = array_ops.zeros(tensor.shape, tensor.dtype)

  with current_strategy.scope():
    # TODO(priyag, sourabhbajaj): Adjust steps_per_run appropriately based on
    # steps_per_epoch and number of epochs.
    ctx = current_strategy.run_steps_on_dataset(
        step_fn, iterator, iterations=current_strategy.steps_per_run,
        initial_loop_values=initial_loop_values)

  train_op = ctx.run_op
  output_tensors = ctx.last_step_outputs

  # Copy the weights from the original model to each of the replicated models.
  orig_model_weights = model.get_weights()
  with current_strategy.scope():
    distributed_model = current_strategy.unwrap(model._grouped_model)[0]
    distributed_training_utils.set_weights(
        current_strategy, distributed_model, orig_model_weights)

  assert steps_per_epoch is not None

  # TODO(priyag, sourabhbajaj): Add callbacks support.
  # TODO(priyag, sourabhbajaj): Add validation.
  for epoch in range(initial_epoch, epochs):
    for step_index in range(
        0, steps_per_epoch, current_strategy.steps_per_run):
      try:
        _, outs = K.get_session().run([train_op, output_tensors])
        # TODO(priyag, sourabhbajaj): Remove this logging in favor of proper
        # summaries through callbacks.
        print('Epoch: {}, step_index: {}, loss: {}'.format(
            epoch, step_index, outs['loss']))
        for label, out in outs.items():
          print(label, ': ', out)
      except errors.OutOfRangeError:
        logging.warning('Your dataset iterator ran out of data; '
                        'interrupting training. Make sure that your dataset '
                        'can generate at least `steps_per_epoch * epochs` '
                        'batches (in this case, %d batches).' %
                        steps_per_epoch * epochs)
        break

  # Copy the weights back from the replicated model to the original model.
  with current_strategy.scope():
    updated_weights = current_strategy.unwrap(
        model._grouped_model)[0].get_weights()
    model.set_weights(updated_weights)

  K.get_session().run(current_strategy.finalize())

  # TODO(priyag, sourabhbajaj): Return history.


def test_loop(model, iterator, verbose=0, steps=None):
  """evaluate method to validate a model that uses DistributionStrategy.

  Arguments:
      model: Keras Model instance.
      iterator: Iterator for input data.
      verbose: verbosity mode.
      steps: Total number of steps (batches of samples)
          before declaring predictions finished.
          Ignored with the default value of `None`.

  Returns:
      Scalar loss (if the model has a single output and no metrics)
      or list of scalars (if the model has multiple outputs
      and/or metrics). The attribute `model.metrics_names` will give you
      the display labels for the scalar outputs.
  """
  current_strategy = model._distribution_strategy

  clone_model_on_towers(model, current_strategy)

  def _per_device_test_function(model):
    model._make_test_function()
    return (model.test_function.inputs,
            model.test_function.outputs,
            model.test_function.updates_op,
            model.test_function.session_kwargs)

  inputs, targets = _get_input_from_iterator(iterator, model)
  with current_strategy.scope():
    (grouped_inputs, grouped_outputs, grouped_updates,
     grouped_session_args) = current_strategy.call_for_each_tower(
         _per_device_test_function, model._grouped_model)

    (all_inputs, all_outputs, all_updates,
     all_session_args) = distributed_training_utils.unwrap_values(
         current_strategy, grouped_inputs, grouped_outputs, grouped_updates,
         grouped_session_args, with_loss_tensor=True)

    dataset_inputs = distributed_training_utils.flatten_perdevice_values(
        current_strategy, inputs)
    dataset_targets = distributed_training_utils.flatten_perdevice_values(
        current_strategy, targets)

  distributed_test_function = K.Function(
      all_inputs, all_outputs,
      updates=all_updates,
      name='distributed_test_function',
      **all_session_args)

  # We need to set sample_weights to None since there are sample weight
  # placeholders that are created with default values.
  sample_weights = [None for _ in range(len(model.outputs) *
                                        current_strategy.num_towers)]
  if model.uses_learning_phase and not isinstance(K.learning_phase(), int):
    ins = dataset_inputs + dataset_targets + sample_weights + [0]
  else:
    ins = dataset_inputs + dataset_targets

  outs = []
  if verbose == 1:
    progbar = Progbar(target=steps)

  # Copy the weights from the original model to each of the replicated models.
  orig_model_weights = model.get_weights()
  with current_strategy.scope():
    distributed_model = current_strategy.unwrap(model._grouped_model)[0]
    distributed_training_utils.set_weights(
        current_strategy, distributed_model, orig_model_weights)

  if steps is not None:
    for step in range(steps):
      batch_outs = distributed_test_function(ins)
      batch_outs = _aggregate_metrics_across_towers(
          current_strategy.num_towers, model.metrics_names, batch_outs)
      if isinstance(batch_outs, list):
        if step == 0:
          for _ in enumerate(batch_outs):
            outs.append(0.)
        for i, batch_out in enumerate(batch_outs):
          outs[i] += batch_out
      else:
        if step == 0:
          outs.append(0.)
        outs[0] += batch_outs
      if verbose == 1:
        progbar.update(step + 1)
    for i in range(len(outs)):
      outs[i] /= steps

  if len(outs) == 1:
    return outs[0]
  return outs


def predict_loop(model, iterator, verbose=0, steps=None):
  """Abstract method to loop over some data in batches.

  Arguments:
      model: Keras Model instance.
      iterator: Iterator for input data.
      verbose: verbosity mode.
      steps: Total number of steps (batches of samples)
          before declaring `_predict_loop` finished.
          Ignored with the default value of `None`.

  Returns:
      Array of predictions (if the model has a single output)
      or list of arrays of predictions
      (if the model has multiple outputs).
  """
  current_strategy = model._distribution_strategy

  clone_model_on_towers(model, current_strategy)

  def _per_device_predict_function(model):
    model._make_predict_function()
    return (model.predict_function.inputs,
            model.predict_function.outputs,
            model.predict_function.updates_op,
            model.predict_function.session_kwargs)

  inputs, _ = _get_input_from_iterator(iterator, model)
  with current_strategy.scope():
    (grouped_inputs, grouped_outputs, grouped_updates,
     grouped_session_args) = current_strategy.call_for_each_tower(
         _per_device_predict_function, model._grouped_model)

    (all_inputs, all_outputs, all_updates,
     all_session_args) = distributed_training_utils.unwrap_values(
         current_strategy, grouped_inputs, grouped_outputs, grouped_updates,
         grouped_session_args)

    dataset_inputs = distributed_training_utils.flatten_perdevice_values(
        current_strategy, inputs)

  distributed_predict_function = K.Function(
      all_inputs, all_outputs,
      updates=all_updates,
      name='distributed_predict_function',
      **all_session_args)

  if model.uses_learning_phase and not isinstance(K.learning_phase(), int):
    ins = dataset_inputs + [0]
  else:
    ins = dataset_inputs

  if verbose == 1:
    progbar = Progbar(target=steps)

  # Copy the weights from the original model to each of the replicated models.
  orig_model_weights = model.get_weights()
  with current_strategy.scope():
    distributed_model = current_strategy.unwrap(model._grouped_model)[0]
    distributed_training_utils.set_weights(
        current_strategy, distributed_model, orig_model_weights)

  if steps is not None:
    # Since we do not know how many samples we will see, we cannot pre-allocate
    # the returned Numpy arrays. Instead, we store one array per batch seen
    # and concatenate them upon returning.
    unconcatenated_outs = []
    for step in range(steps):
      batch_outs = distributed_predict_function(ins)
      if not isinstance(batch_outs, list):
        batch_outs = [batch_outs]
      if step == 0:
        for _ in batch_outs:
          unconcatenated_outs.append([])
      for i, batch_out in enumerate(batch_outs):
        unconcatenated_outs[i].append(batch_out)
      if verbose == 1:
        progbar.update(step + 1)
    if len(unconcatenated_outs) == 1:
      return np.concatenate(unconcatenated_outs[0], axis=0)
    return [
        np.concatenate(unconcatenated_outs[i], axis=0)
        for i in range(len(unconcatenated_outs))
    ]


def _clone_and_build_model(model, inputs=None, targets=None):
  """Clone and build the given keras_model."""
  # We need to set the import here since we run into a circular dependency
  # error.
  from tensorflow.python.keras import models  # pylint: disable=g-import-not-at-top
  cloned_model = models.clone_model(model, input_tensors=inputs)

  # Compile and build model.
  if isinstance(model.optimizer, optimizers.TFOptimizer):
    optimizer = model.optimizer
  else:
    optimizer_config = model.optimizer.get_config()
    optimizer = model.optimizer.__class__.from_config(optimizer_config)

  # TODO(priyag): Is there a cleaner way to do this? The API doc suggests a
  # single tensor should be OK but it throws an error in that case.
  if (targets is not None and not isinstance(targets, list) and
      not isinstance(targets, dict)):
    targets = [targets]
  cloned_model.compile(
      optimizer,
      model.loss,
      metrics=model.metrics,
      loss_weights=model.loss_weights,
      sample_weight_mode=model.sample_weight_mode,
      weighted_metrics=model.weighted_metrics,
      target_tensors=targets)
  return cloned_model


def clone_model_on_towers(
    model, strategy, make_callback_model=False, inputs=None, targets=None):
  """Create a cloned model on each tower, unless already created."""
  if not model._grouped_model:
    with strategy.scope():
      model._grouped_model = strategy.call_for_each_tower(
          _clone_and_build_model, model, inputs, targets)
    if make_callback_model:
      model._make_callback_model()


def _aggregate_metrics_across_towers(num_devices, out_labels, outs):
  """Aggregate metrics values across all towers.

  When using `MirroredStrategy`, the number of towers is equal to the
  number of devices over which training is distributed. This may not always be
  the case.

  Args:
    num_devices: Number of devices over which the model is being distributed.
    out_labels: The list of metric names passed to `compile`.
    outs: The output from all the towers.

  Returns:
    The average value of each metric across the towers.
  """
  # TODO(anjalisridhar): Temporary workaround for aggregating metrics
  # across towers. Replace with the new metrics module eventually.
  merged_output = []
  # The first output is the total loss.
  merged_output.append(outs[0])
  current_index = 1
  # Each label in `out_labels` corresponds to one set of metrics. The
  # number of metric values corresponds to the number of devices. We
  # currently take the mean of the values.
  for _ in out_labels[1:]:
    m = np.mean(outs[current_index:current_index + num_devices])
    merged_output.append(m)
    current_index += num_devices
  return merged_output


def _get_input_from_iterator(iterator, model):
  """Get elements from the iterator and verify the input shape and type."""
  next_element = iterator.get_next()
  # TODO(anjalisridhar): Support predict input correctly as it will not contain
  # targets, only inputs.
  if not isinstance(next_element, (list, tuple)) or len(next_element) != 2:
    raise ValueError('Please provide model inputs as a list or tuple of 2 '
                     'elements: input and target pair. '
                     'Received %s' % next_element)

  x, y = next_element
  # Validate that all the elements in x and y are of the same type and shape.
  # We can then pass the first element of x and y to `_standardize_weights`
  # below and be confident of the output.
  x_values, y_values = distributed_training_utils.\
    validate_distributed_dataset_inputs(model._distribution_strategy, x, y)
  # TODO(sourabhbajaj): Add support for sample weights in distribution
  # strategy.
  model._standardize_weights(x_values, y_values)
  return x, y